1) topology cleanup
拓扑清理
1.
A mesh topology cleanup procedure is proposed for improving the mesh quality after refined.
提出一系列的网格拓扑清理模版,对加密后的网格进行拓扑清理操作,有效地提高了板料网格的质量。
2) topological theory
拓扑理论
1.
Study on CRM Model and Algorithm Based on Customer Cluster and Topological Theory;
基于客户集群和拓扑理论的CRM模型与算法研究
3) physical topology
物理拓扑
1.
Based on shortage of recent physical topology discovery algorithm,this paper proposes a Width-First Search topology discovery algorithm based on STP and tests it.
在分析当前物理拓扑算法不足的前提下,提出了一种基于生成树协议广度优先遍历的拓扑发现算法并进行了算法仿真。
2.
Based on the study of heuristic topology probe algorithms and physical topology probe algorithms, an Intra-AS network topology probe named NetworkProbe is designed and implemented, its kernel is an heuristic topology probe algorithm and an physical topology probe algorithm, the SNMP-based algorithm and other topolog.
在对局域网网络层和物理拓扑探测算法研究的基础上,本文设计并实现了非授权局域网拓扑探测系统Net-workProbe。
4) topology management
拓扑管理
1.
Joint routing and topology management for energy-efficiency on-demand Ad Hoc network;
一种结合路由转发与拓扑管理的节能算法
2.
Research on Topology Management and QoS in Wireless Ad Hoc Networks Based on Location Information and Topological Construction Analysis;
基于位置信息和拓扑结构分析的无线Ad Hoc网络拓扑管理和QoS研究
3.
Design and Implementation of Topology Management in EPON NMS;
EPON网管系统中拓扑管理的设计与实现
5) Topology
[英][təu'pɔlədʒi] [美][to'pɑlədʒɪ]
拓扑理论
1.
Evaluation on the rationality of organization structure by means of topology;
利用拓扑理论评价组织结构合理度
2.
Topology is more and more widely applied in the creative design of mechanism.
拓扑理论在机构创新设计中的应用越来越广泛 ,而在实际机构运动分析中 ,设计者往往采用传统的分析方法。
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条