1) singular orbit
奇异轨道
2) nonsingular orbit elements
非奇异轨道要素
1.
Aiming at this situation,satellite motion was described by nonsingular orbit elements and the corresponding impulsive control model for a near round reference satellite formation is derived.
针对高斯摄动方程在描述近圆轨道时其近地点幅角和平近点角存在奇异性的问题,采用非奇异轨道要素描述卫星轨道运动,推导了适用于近圆参考轨道编队的非奇异轨道要素脉冲控制模型。
3) singularity loci
奇异轨迹
1.
The singularity loci and dexterity of two degrees of freedom asymmetric spherical five-bar mechanisms are investigated.
针时非对称球面五杆机构,研究了机构的奇异轨迹曲线和灵巧度。
2.
Based on the new singularity kinematics principles,a cubic polynomial expression that represented the singularity loci of 3/6-SPS Stewart manipulator was obtained and a singularity-equivalent-mechanism was proposed as well.
基于并联机构奇异位形产生的运动学原理,推导出3/6-SPS型Stewart机构奇异轨迹的解析表达式,并基于此原理提出了分析并联机构奇异位形的等效机构法,利用此方法推导出了3/6-SPS型Stewart机构处于一般姿态时在θ-平面上的奇异轨迹方程,并对其轨迹的性质进行了识别。
3.
Based on analytical expression that represents the singularity loci of Gough-Stewart manipulator, a quadratic expression that represents singularity loci of the manipulator in parallel principal sections was derived and further property of the singularity loci was identified.
基于Gough-Stewart并联机构奇异轨迹的解析表达式,推导出了该并联机构在主截面上的奇异轨迹,并对此奇异轨迹的性质进行了识别。
4) singular cycle
奇异闭轨
1.
In this paper,the smoothness of successor function in the neighborhood of the singular cycle of the perturbated system has been studied by analyzing the smooth quality of Dulac mapping and regular mapping,and got the main conclusion: The successor function in the neighborhood of the singular cycle of the perturbated system is Ck-1,when the system is Ck.
扰动系统在奇异闭轨附近的后继函数对于判断奇异闭轨分支出极限环的个数、极限环的稳定性和相对位置具有极其重要的作用。
5) odd periodic point
奇周期轨道
6) heteroclinic orbit
异宿轨道
1.
In this paper,the Melnikov function method has been used to analyse the distance between stable manifold and unstable manifold of the soft spring Duffing equation after its heteroclinic orbits rupture as the result of a small perturbation.
在这篇文章中,作者用Melnikov函数方法分析了软弹簧型Duffing方程[1]在摄动下异宿轨道破裂后稳定流形与不稳定流形的相对位置,给出了方程在不同摄动下分支出极限环的条件与极限环的位置
2.
The heteroclinic orbit of a three order nonlinear dynamic systems was obtained through analyzing its stability with no perturbation.
通过对一类三次非线性动力系统在无扰动下的稳定性分析,得出其异宿轨道,利用Melnikov函数求出此非线性动力系统发生混沌运动的条件,并利用数值仿真验证了系统发生混沌运动条件的正确性。
补充资料:轨道保持(见航天器轨道控制)
轨道保持(见航天器轨道控制)
orbit keeping
guidQo baoehi轨道保持(o rbit keePing)见航天器轨道控制。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条