1) homoclinic (heteroclinic) orbit
同宿(异宿)轨道
2) homoclinic and heteroclinic orbit
同宿与异宿轨道
1.
The paper is devoted to the studying of the homoclinic and heteroclinic orbits in a class of planar Hamiltonian systems with parameters and rational singularity.
研究一类含有两个参数和有理奇性平面哈密顿系统的同宿与异宿轨道。
4) heteroclinic orbit
异宿轨道
1.
In this paper,the Melnikov function method has been used to analyse the distance between stable manifold and unstable manifold of the soft spring Duffing equation after its heteroclinic orbits rupture as the result of a small perturbation.
在这篇文章中,作者用Melnikov函数方法分析了软弹簧型Duffing方程[1]在摄动下异宿轨道破裂后稳定流形与不稳定流形的相对位置,给出了方程在不同摄动下分支出极限环的条件与极限环的位置
2.
The heteroclinic orbit of a three order nonlinear dynamic systems was obtained through analyzing its stability with no perturbation.
通过对一类三次非线性动力系统在无扰动下的稳定性分析,得出其异宿轨道,利用Melnikov函数求出此非线性动力系统发生混沌运动的条件,并利用数值仿真验证了系统发生混沌运动条件的正确性。
5) heteroclinic orbits
异宿轨道
1.
Some non linear dynamic equations with second and third degree variables are discussed, subharmonic orbits, heteroclinic orbits are obtained, and the conditions for chaos to occur are presented.
通过对含二次和三次非线性项动力方程的讨论 ,得到了系统的次谐轨道和异宿轨道等 ,给出了系统出现混沌的条件。
2.
In this paper,the non-linear Hamilton dynamical systems with second-and third-degree veriables are studied,heteroclinic orbits and homoclinic orbits are obtained,and all these are prepared for the computation of the Melnikov function.
得到了该系统的异宿轨道和同宿轨道及其产生的条件。
6) heroclinic orbit
异宿轨道
1.
Its chaotic motion may be reduced to a Duffing equation which has a heroclinic orbit.
研究了非线性弹性双向受压矩形薄板受迫振动时的混沌运动,将其混沌运动归结为关于一个具有异宿轨道的Dufing方程的讨论,利用Melnikov函数法给出了发生混沌运动的临界条件,并进行了数值模拟,揭示出在此类新的非线性动力系统中,同样存在着发生混沌的可能。
补充资料:角宿一
角宿一 Spica 室女座a,离地球275光年。是同B1IV和B3V组成双谱分光双星,轨道周期4.0145天,质量分别为10.3太阳质量和6.1太阳质量。双星轨道面和天球切面的交角为65o ,光变主要由椭球效应见变星)产生。两子星中主星属仙王座b型变星,脉动周期0.1738天。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条