1) Poisson-Gumbel distribution
Poisson-Gumbel分布
2) Gumbel distribution
Gumbel分布
1.
Sampling inspection plan for the coefficient of variation of Gumbel distribution;
Gumbel分布变异系数的抽样检验
2.
Estimates of the parameters of Gumbel distribution and their application to hydrology;
再论Gumbel分布参数估计及在水位资料分析中应用
3.
The mixed Gumbel distribution of stock returns;
股票收益率的混合Gumbel分布研究
3) Gumbel extremal distribution
Gumbel极值分布
1.
The moment method, the Thomas plot method and the least square method based on the Gumbel extremal distribution were systematically inttoduced and the maximum temperature, the maximum mean speed,the maximum daily precipitation and the maximum wave height that appear once in return period were calculated by using these methods.
介绍了用Gumbel极值分布理论推算气候极值的矩法、Thomas曲线公式和最小二乘法。
4) Gumbel distribution function
Gumbel概率分布函数
1.
The Gumbel distribution function and the least-square fitting method are used to calculate design wave heights.
利用澳大利亚悉尼观测站连续16年的实测资料和Gumbel概率分布函数对这三种方法进行分析和比较,选出一种比较好的计算方法。
5) Poisson distribution
Poisson分布
1.
Multinomial distribution and multi-Poisson distribution;
多项分布与多元Poisson分布
2.
Optimizing order strategies of twoechelon retailer system with Poisson distributions;
基于Poisson分布需求的两级零售系统最优订货策略
3.
Several kind of estimates of Poisson distribution s parameter;
Poisson分布参数的几种估计
6) Poisson-Geometric distribution
Poisson-Geometric分布
补充资料:Poisson分布
Poisson分布
Poisson distribution
P‘凶刀l分布tP成岛仪l山目ri加‘阅;nvacco皿ap鱿npe皿e-湘IIHel 取非负整数值k二0,l,·的随机变量X的概率分布(prohabi石ty distribution):X取k的概率为 ,k 尸}X=k}二e一李,. 人!其中参数元>0.Poisson分布的母函数(ge~tmgful犯-tioll)和特征函数(d祖mctel七tic funCtion)相应为 (P(:)=。·“一’)和八t)二以pl元(e“一l)}.数学期望、方差和较高阶半不变量都等于元.Po讹。分布的分布函数 _、钾一刃 F(义)一谷〕“一‘卞·对千k二O,l,…可以表示为 :(、)一共f,人。一、,一1一、;+.(*), k!J了--·,-一:+、,·,,其中S*,.(人)是参数为人十1的f分布(galllma-d治trlbutjojl)函数在点又处的值;因此,特另11有 p{X=k}=S*(元)一S*一J(又);或者表示为 F(k)=1一HZ、+2(2又),其中H:*十2(2又)是白由度为2人一卜2的义2分布(‘cll卜squ:、耐’distributxon)函数在点2元处的值.分别服从参数为之,,…,元。的Po姚on分布的独立随机变量x.,二,龙之和,服从参数为元、十一卜之的Pojsson分布. 相反,如果二独立随机变量XI与XZ之和X,+X:服从Poisson分布则二随机变量X}和戈也都服从Po俪on分布(P:,泛KoB定理(Ra下kovth①rclll)).关于独立随机变量之和的分布收敛于Poisson分布,存在的一般允分必要条件.当只卜的时,随机变量(X一久)/寸下的极限分布是标准正态分布(no眼d distributio一飞). 氏姚on分布.最初是由5.Poisson(1837)在,7(试验次数)很大而p(成功概率)很小的情形下,推导二项分布(bino训al dis创bution)的渐近公式时得到的.见POis,”1定理(Po璐on tlleo爬111 2).Po讹。n分布很好地近似描绘许多物理现象(见【21,1,第6章).Po眺on分布是i午多离散型分布的极限分布,例如.超几何分布(hyperge。叱tric distribution),负二项分布(11eg币ve bino二11 distribution),代妙a分布(玛lyad讯ribution),以及“质点按盒分配”问题中在其参数一定变化情形下产生的分布.在概率模型中,Poisson分布作为精确概率分布有很大作用.在随机过程论(见PI比以价过程(P溅on宜oce骆))中,Poisson分布作为精确概率分布其本质表现得最充分:Poisson分布是在固定时间段t内某些随机事件出现次数X(t)的分布 二(:卜、卜一平,、一。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条