2) normal solvable operator
正规可解算子
3) normal operator
正规算子
1.
The concept of a special normal operator, self-conjugate operator, in Hilbert space was extended to a polynomial conjugate operator.
将Hilbert空间上特殊的正规算子———自共轭算子的概念推广到多项式共轭算子。
2.
The properties of the operator and the necessary and sufficient conditions for the regular value to exist were studied using the concept and properties of normal operators in Hilbert space, the spectrum mapping principle and analogy.
应用希尔伯特空间上正规算子的概念、性质、谱映射定理和类推的方法,研究了该类算子的性质及正则值存在的充要条件。
3.
The properties of the polynomial conjugate operator and the necessary and sufficient conditions for the regular valve to exist are studied by using spectral decomposition and properties of normal operator in Hilbert space.
应用希尔伯特空间上正规算子的概念,性质和谱分解定理,研究了多项式共轭算子的性质及正则值存在的充要条件。
4) analytically cohyponormal operators
解析余亚正规算子
1.
In addition,we show that Weyl s theorem holds for analytically M-hyponormal operators andα-Weyl s theorem holds for analytically cohyponormal operators.
若T有单值延伸性且T为reguloid算子,则Weyl定理对f(T)成立,其中f∈H(σ(T)),而当T~*有单值延伸性且T是reguloid算子,α-Weyl定理对f(T)成立,其中,f∈H(σ(T)),作为定理应用,我们证明了Weyl定理对解析M-亚正规算子成立,α-Weyl定理对解析余亚正规算子成立。
5) normal solvability
正规能解性
1.
The solvability of such equations in space L2(G) is solyed by means of utilizing the normal solvability of integral operator.
利用积分算子的正规能解性,解决了该类方程在L2(G)中的可解性问题。
6) hyponormal operator
亚正规算子
1.
An upper bound is obtained for the distance between two hyponormal operators in terms of the distance between their spectra.
利用算子的谱给出两个亚正规算子间距离上限的刻画,并对亚正规算子A,得出inf‖A-λI‖=‖A‖λ∈C当且仅当∩ U(x,‖A‖)={0} x∈σ(A),其中U(x,‖A‖)={z∈C;|z-x|≤‖A‖}。
2.
Firstly,The relation between the quasi-normal and hyponormal operators is investigated.
讨论算子的拟正规性与亚正规性的关系,并以单侧加权移位算子为例证明了并非所有的亚正规算子是拟正规的。
补充资料:能解
1.犹能耐﹐才能。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条