1) stochastic γ-stability
随机γ-稳定
1.
H∞ Analysis on a class of Ito Stochastic Systems with Markov Jumping Process are studied, necessary and sufficient conditions are established for the stability of stochastic systems; with the given premise of disturbance attenuation level γ, necessary and sufficient conditions are obtained for stochastic γ-stability.
得到了随机系统稳定的充要条件,在给定干扰抑制水平γ的前提下,得到了随机γ-稳定的一个充要条件,并且此结果具有一定的广泛性。
2) stochastic stability
随机稳定
1.
The stochastic stability for a class of uncertain hybrid linear systems with Markovian jumping parameters was discussed.
通过分析一类具有Markov跳跃参数的不确定混合线性系统的随机稳定性问题,将确定型系统中的Lasalle稳定性定理推广到混合系统中,并对系统不确定部分的未知范数上界提出了一种参数自适应估计方法及相应的鲁棒控制律,实现了混合线性系统以概率1渐近稳定。
2.
Based on the linear matrix inequality (LMI) technique and the Lyapunov method, a sufficient condition is derived for the stochastic stability of the closed-loop NCS, and a design procedure is.
基于线性矩阵不等式技术和李亚普诺夫方法得到了闭环系统随机稳定的充分条件,并给出了状态反馈保性能控制器的设计方法。
3.
By using the Lyapunov method and the linear matrix inequality technique, sufficient conditions for stochastic stability of closed-loop systems are obtained and the design method of a stabilizing controller is presented.
利用Lyapunov方法和线性矩阵不等式技巧,得到了闭环系统随机稳定的充分条件,并给出了镇定控制器的设计方法。
3) stochastic stable
随机稳定
1.
The simulation results show that two classes of designed controllers and switching laws guarantee the closed-loop systems is stochastic stable.
针对一组由随机微分方程描述的子系统组成的切换系统,采用单李雅普诺夫方法和多李雅普诺夫方法,分别给出了切换系统的随机稳定的充分条件,给出控制器的设计方法。
2.
The simulation results show that the designed controllers and switching laws guarantee the closed-loop systems stochastic stable.
仿真结果表明,所设计的控制器能保证闭环系统在一定意义下的随机稳定。
4) Stochastic stability
随机稳定性
1.
After introducing the constant differential equation assistant system, the stochastic stability relative theorem of backward stochastic differential equation (BSDE) of It type is studied by the method of Lyapunov function, and two criterions of stochastic stability are testified.
通过引入常微辅助系统 ,利用Lyapunov函数方法 ,给出了It^o型倒向随机微分方程的随机稳定性比较定理 ,得到了该方程平凡解yt≡ 0的随机稳定性的两种判据 。
2.
In this paper we study the stochastic stability and convergence conditions of a class of asynchronous large_scale systems with random state transition.
本文针对一类具有随机状态转移概率的异步大系统,研究了该类异步大系统的随机收敛性及随机稳定性条件。
3.
By the method of Lyapunov function, the stochastic stability of backward stochatic differenttiai equation(BSDE)of It type is studied as follo
s 的随机稳定性,得到了判据。
5) stationary random fields
稳定随机场
6) stochastic stabilization
随机稳定化
补充资料:随机数和伪随机数
随机数和伪随机数
random and pseudo-randan numbers
随机数和伪随机数【喇间佣1 al川牌”山一喇闭..m.山娜;cJI了,a如曰e”nce,口oc月卿成.以叹“c月a】 数亡。(特别,二进制数:。),其顺序出现,满足某种统计正则性(见概率论(probability Uleory)).人们是这样区别随机数(mndomn切mbe比)和伪随机数(PSeudo一mn由mn切mbe岛)的,前者由随机的装置来生成,而后者是用算术算法构造的.总是假设(出于较好或较差的理由)所得(或所构造)的序列具有频率性质,这些性质对于具有分布函数F(z)的某随机变量心独立实现的一个序列来说是“典型的”;因此人们称作根据规律F(习分布的(独立的)随机数.最经常使用的例子为:在区间【O,l]上均匀分布的随机数亡。,尸(亡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条