1) starlike mappings
星形映照
1.
Geometry quality for these mappings can be obtained from these inqualities, and some sufficiency conditions for starlike mappings and spirallike mappings are given.
由此导出全纯映照本身的一些几何性质,并得到星形映照和螺形映照的充分判别条件。
2.
In this paper, the authors obtain the parametric representation of starlike mappings on the unit ball Bn in Banach spaces; As a direct application, the growth theorem for starlike mappings is set up, which generalizes the corresponding results for starlike mappings on the unit ball in Cn .
本文给出Banach空间单位球B上星形映照的参数表达式;作为应用,给出B上的星形映照的增长定理;推广了Cn中单位球上已知的关于星形映照的结果。
3.
As its application, we obtain some sufficient conditions for starlike mappings and close-to-starlike mappings on bounded balanced domains in Cn.
作为应用,给出 有界平衡域上星形映照以及近似星形映照的一些充分判别条件。
2) ε starlike mapping
ε星形映照
1.
In this paper, The authors define the family of ε starlike mappings, in purpose to treat the family of convex mappings and the family of starlike mappings as one family, and to understand the transition from one family to another.
本文定义了ε星形映照族,用统一的观点来处理复Banach空间、Cn及C中的各种区域上的凸映照族与星形映照族,研究它们之间是如何过渡的,并讨论了其判别准则及Roper-Suffridge算子。
3) E starlike mapping
E星形映照
4) biholomorphic starlike mapping
双全纯星形映照
1.
Prom these, we may construct a lot of concrete examples about biholomorphic starlike mappings, biholomorphic convex mappings, biholomorphicεstarlike mappings on some domains in Cn, or complex Hilbert spaces, or complex Banach spaces from e starlike functions on the unit disc U in C.
本文将Cn中的Roper-Suffridge算子推广到任意复Banach空间中,并证明这种算子在任意复Banach空间中的某些区域上具有保持ε星形性,由此可以构造出任意复Banach空间,复Hilbert空间和Cn中的一些区域上的许多双全纯星形映照、双全纯凸映照、双全纯ε星形映照,同时,得到它们的增长定理等,将龚升与刘太顺,Roper与suffridge,Graham,Kohr等学者在Cn中的一些结果推广到任意复Banach空间或复Hilbert空间中。
5) Starlike mapping of order α
α次星形映照
6) strongly starlike mappings of order α
α次强星形映照
1.
The authors obtain the growth and covering theorems for strongly starlike mappings of order α on bounded starlike circular domains.
作者得到有界星开圆型域上的α次强星形映照的增长定理 ,所讨论的域是相当广泛的 ,因为非有界星形圆形域上可能不存在星形映照 。
补充资料:星形-三角形变换
一种简单的电路间等效变换。 以阻抗为参数的3个电路元件的星形连接如图1所示, 三角形连接如图2所示。当这两种连接有相同的外特征时,二者便可等效互换。互换的规则是:将星形连接变换成三角形连接,要求后者的参数与前者的参数之间有如下的关系,即 (1)
反之,将三角形连接变换成星形连接,则需要
(2)
当Z1=Z2=Z3=Z时,式(1)简化为Z12=Z23=Z31=3ZZ12=Z23=Z31=Z 时,式(2)简化为式(1)和式(2)称为两种连接间的互换公式。
反之,将三角形连接变换成星形连接,则需要
(2)
当Z1=Z2=Z3=Z时,式(1)简化为Z12=Z23=Z31=3ZZ12=Z23=Z31=Z 时,式(2)简化为式(1)和式(2)称为两种连接间的互换公式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条