1) conformal mapping
保形映照
1.
Firstly, by continuation technology and conformal mapping, the periodic collinear crack problems are studied in the two cases of permeable and impermeable boundary conditions, and solutions in closed form are obtained, then the formulae for the stress intensity factors and electric displacement inten.
首先研究了周期分布的共线反平面裂纹问题,借助于Riemann-Schwarz延拓技术和保形映照方法,分别就电学渗透性和非渗透性边界条件的两种情况做了探讨,获得了封闭形式的解,得到了裂纹尖端的应力和电位移强度因子,并数值化了周期裂纹间的干涉效应和尺度效应。
2) conformal mapping method
保形映照法
1.
The present paper provide a comprehensive retrospect and review on the applications of the macro fracture mechanics and complex variable function method,especially on conformal mapping method,including the introduction of the works of the author and the group of the author study at.
对宏观断裂力学的应用以及复变函数法特别是其中的保形映照法的作用做了一个较全面的回顾和评述 ,介绍了近来作者及其所在的研究课题小组在这方面所做的一些工作 。
3) conformal mapping
共形映照
1.
Identifying the Bloch sphere representation of qubit with the extended complex plane by means of stereographic projection and considering the gate operations of single qubit,we obtain equivalance relation between unitary operations and one special kind of conformal mappings.
考虑一位量子比特的门操作,将幺正变换与复平面上一类特殊的共形映照相联系。
2.
It is proved that the inverse mapping Z = f-1(W) is also harmonic if and only if f is any one of the following three kinds of fUnctions: (i) one-to-one conformal mapping; (ii) affine transformation; (iii) function of the form where A, B, α and βare constants with the later two subject to the condition R(az+β) > 0, z ∈ D.
设是在一个单连通区域上的单叶调和映照,我们证明了反函数z=f-1()也是调和映照的充要条件是f为下面三类函数之一:(i)单叶共形映照;(ii)仿射交换映照;(iii)具有形式f(z)=A[az+β+log(1-e-az-β)-log(1-e-az-β)]+B的调和映照,其中A,B,α和β是常数且满足条件R(az+β)>0,Z∈D。
4) spirallike mappings
螺形映照
1.
This paper using complex analyis and functional analysis,studies spirallike mappings on unit ball in several complex variables,and obtains the growth and covering theorems about a kind of spirallike mappings with zero of higher order.
以复分析与泛函分析为工具,研究多复变数单位球上的螺形映照,给出了一类螺形映照的高阶零点形式的增长和掩盖定理。
2.
Geometry quality for these mappings can be obtained from these inqualities, and some sufficiency conditions for starlike mappings and spirallike mappings are given.
由此导出全纯映照本身的一些几何性质,并得到星形映照和螺形映照的充分判别条件。
3.
Geometry quality for these mappings can be obtained from these inqualities,and some sufficiency conditions for starlike mappings and spirallike mappings are given.
本文建立了多复变数单位球上全纯映照的一些偏微分不等式 ,由此可映照本身的一些几何性质 ,并得到星形映照和螺形映照的充分判别条件 。
5) starlike mappings
星形映照
1.
Geometry quality for these mappings can be obtained from these inqualities, and some sufficiency conditions for starlike mappings and spirallike mappings are given.
由此导出全纯映照本身的一些几何性质,并得到星形映照和螺形映照的充分判别条件。
2.
In this paper, the authors obtain the parametric representation of starlike mappings on the unit ball Bn in Banach spaces; As a direct application, the growth theorem for starlike mappings is set up, which generalizes the corresponding results for starlike mappings on the unit ball in Cn .
本文给出Banach空间单位球B上星形映照的参数表达式;作为应用,给出B上的星形映照的增长定理;推广了Cn中单位球上已知的关于星形映照的结果。
3.
As its application, we obtain some sufficient conditions for starlike mappings and close-to-starlike mappings on bounded balanced domains in Cn.
作为应用,给出 有界平衡域上星形映照以及近似星形映照的一些充分判别条件。
6) quasiconformal mappings
拟共形映照
1.
In this paper, we have studied the distortion properties for N-dimensional K-quasiconformal mappings and shown that the distortion in the neighborhood of the boundary points can be controled by the distortion in the boundary points by using quasihyperbolic metric.
本文研究了N维K-拟共形映照的偏差性质,利用拟双曲度量得到了区域边界上任意一点附近的偏差可用该点邻域上偏差来控制,该结果将F。
2.
Some developing procedures of complex analysis are introduced, including the proof of certain important conjectures and their methods with respect to the theory of univalent functions, quasiconformal mappings and Teichm黮ler space, also some open problems are listed.
介绍复变函数几何理论的一些发展进程,围绕单叶函数论,拟共形映照理论和 Teichmüller空间理论论述了某些重要猜想的解决,方法以及遗留未决的问题的新进展。
3.
In this paper, we proved that the two conditions of linearly locally connectivity are invariant respectively under quasiconformal mappings which fixed the infinity and pointed out the condition-of fixed the infinity is essential by giving an example.
本文证明了Rn中线性局部连通集定义中的两个性质分别在保持无穷远点不变的拟共形映照下是不变的,并且指出保持无穷远点不变的条件是必不可少的。
补充资料:保形溶液理论
建立在对应态原理基础上的一种溶液理论。如果一对分子的势能ε是分子间距r的函数,且仅包含两个特征参数ε*和r*,则
ε=ε*φ(r/r*)
式中r*是两个分子处于其势能最低点处的距离;ε*是位于此距离时势能的数值。凡具有相同的势能函数φ,只是一对分子的相互作用特征参数ε*和r*有所差别的一组液体,称为保形液体。
设有某一保形液体,其分子参数ε*和r*与另一选定的参考保形液体的分子参数ε奵和r奵只有很小差别,被看成对参考液体的微扰,令f=ε*/ε奵,1/g=r*/r奵。设总势能等于全部成对分子相互作用能之和。在f 和g 接近于1时,将自由能F围绕着参考物质的 ε奵和r奵展开成泰勒级数,只取与(ε*-ε奵)和(r*-r奵)成正比的项(称为一级微扰),推导得溶液的吉布斯函数为:
G=G0+U0(f-1)+3(NkT-pV0)(g-1)
式中G0、U0、V0为参考物质的吉布斯函数、内能和体积;N为分子数;k为玻耳兹曼常数;T为热力学温度;p为压力。上式以参考物质的热力学性质和分子参数来表达某种液体的热力学性质,是对应态原理的一种表达形式。将此原理应用于溶液,认为在该混合物与构成它的纯组分均符合此原理的条件下,把溶液等价于一种受到微扰的假想液体,使用了完全无规的条件,推导出:
式中frs=ε凈/ε凅;1/grs=r凈/r凅;ε凅和r凅为参考液体的一对分子的特征参数;ε凈和r凈为溶液中一对r、s分子的特征参数。对于二元体系,导出的过量吉布斯函数GE为:
GE=x1x2U0(2f12-f11-f22)
保形溶液理论避免了使用具体的物理模型,因而可以用于检验其他具有物理模型的溶液理论。它的适用范围严格限制于符合对应态原理的球形分子或接近于球形分子所构成的偏离理想溶液程度很小的混合物,能完全满足其所要求的条件的溶液体系为数很少。
ε=ε*φ(r/r*)
式中r*是两个分子处于其势能最低点处的距离;ε*是位于此距离时势能的数值。凡具有相同的势能函数φ,只是一对分子的相互作用特征参数ε*和r*有所差别的一组液体,称为保形液体。
设有某一保形液体,其分子参数ε*和r*与另一选定的参考保形液体的分子参数ε奵和r奵只有很小差别,被看成对参考液体的微扰,令f=ε*/ε奵,1/g=r*/r奵。设总势能等于全部成对分子相互作用能之和。在f 和g 接近于1时,将自由能F围绕着参考物质的 ε奵和r奵展开成泰勒级数,只取与(ε*-ε奵)和(r*-r奵)成正比的项(称为一级微扰),推导得溶液的吉布斯函数为:
G=G0+U0(f-1)+3(NkT-pV0)(g-1)
式中G0、U0、V0为参考物质的吉布斯函数、内能和体积;N为分子数;k为玻耳兹曼常数;T为热力学温度;p为压力。上式以参考物质的热力学性质和分子参数来表达某种液体的热力学性质,是对应态原理的一种表达形式。将此原理应用于溶液,认为在该混合物与构成它的纯组分均符合此原理的条件下,把溶液等价于一种受到微扰的假想液体,使用了完全无规的条件,推导出:
式中frs=ε凈/ε凅;1/grs=r凈/r凅;ε凅和r凅为参考液体的一对分子的特征参数;ε凈和r凈为溶液中一对r、s分子的特征参数。对于二元体系,导出的过量吉布斯函数GE为:
GE=x1x2U0(2f12-f11-f22)
保形溶液理论避免了使用具体的物理模型,因而可以用于检验其他具有物理模型的溶液理论。它的适用范围严格限制于符合对应态原理的球形分子或接近于球形分子所构成的偏离理想溶液程度很小的混合物,能完全满足其所要求的条件的溶液体系为数很少。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条