|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
您的位置: 首页 -> 词典 -> Fischer不等式
1) Fischer's inequality
Fischer不等式
2) Hadamard-Fischer inequality
Hadamard-Fischer不等式
1.
Further, we obtained some improvement of the Hadamard-Fischer inequality for totally nonnegative Matrices.
本文讨论了全非负阵与其逆矩阵的关系,改进了关于全非负矩阵的Hadamard-Fischer不等式的几个近期结果。
3) fischer projection model
Fischer式
1.
Research of formulation of changing fischer projection model to haworth perspective model;
糖的Fischer式写成Haworth式规定的探索
4) fischer projection
Fischer投影式
1.
This paper aims at helping the students to set up and develop their space imagination by teaching the rules of fischer projection.
通过Fischer投影式规则的教学,帮助学生建立、训练空间想像力;通过联系Fischer式和Newman式的教学,促进学生发展空间想象的能力。
2.
This paper,with the demarcrating method of R/S patterns applied in Fischer projection as the researching object,aims to introduce a simpler way to judge C *R/S patterns on the ground of basic principles.
以R/S构型标记法直接应用于Fischer投影式 ,按特点规则判断其构型为依据 ,介绍一种简便的环状化合物手性碳原子R/S构型的一种判定方
5) inequality
[英][,ɪnɪ'kwɔləti] [美]['ɪnɪ'kwɑlətɪ]
不等式;不等
6) isoperimetric inequality
等周不等式
1.
The isoperimetric inequality on the Heisenberg group H~n;
关于Heisenberg群上的等周不等式
2.
We will derive the plane isoperimetric inequality and the Bonnesen s isoperi- metric inequality by the method of integral geometry.
将用积分几何方法给出平面等周不等式以及Bonnesen型不等式,平面区域D的面积、周长、最大内接园半径及最小外接园半径的一些几何不等式的简单证明。
补充资料:Harnack不等式(对偶Harnack不等式)
Harnack不等式(对偶Harnack不等式) quality (dual Hatnack inequality) Harnack in- 【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o 0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|