1) symmetric entropy loss function
对称熵损失函数
1.
This paper deals with the minimum risk equivalent estimation for the scale parameter of exponential distribution under the q-symmetric entropy loss function.
指数分布的尺度参数在对称熵损失函数下的最小风险同变估计(MRE)的形式为,本文根据Brown引理证明了此估计量是可容许的。
2.
of process capability under symmetric entropy loss function, gives MRE s exact form and the confidence limit at confidence level 1-α, and at the same time, it proves that the Bayes estimator is admissible.
研究工序能力指数在对称熵损失函数下的最小风险同变估计(MRE)和Bayes估计,给出MRE估计的精确形式,并对置信度为1-α的区问估计给出临界值,同时,证明Bayes估计是可容许的。
2) q-symmetric entropy loss function
q-对称熵损失函数
1.
Parameter estimation of geometric distribution under Q-symmetric entropy loss function;
Q-对称熵损失函数下几何分布参数估计
2.
Parameter estimation of Poisson distribution and binomial distribution under Q-symmetric entropy loss function
Q-对称熵损失函数下的Poisson分布及二项分布的参数估计
3.
In this paper,we define the q-symmetric entropy loss function on the basis of the symmetric entropy loss function.
本文在对称熵损失函数的基础上定义了q-对称熵损失函数,并用参数估计的方法研究了在q-对称熵损失函数下Gamma分布的尺度参数的最小风险同变估计(MRE)、贝叶斯(Bayes)估计、最小最大(Mininax)估计等。
3) q-symmetric entropy loss function
q对称熵损失函数
1.
By means of the parameter estimation,we give the Bayesian estimation,the minimum risk equivalent estimation and the minimax estimation of scale parameter σ under the q-symmetric entropy loss function in the normal distribution,its mean of which is 0.
用参数估计的方法,研究均值为0的正态分布中刻度参数在q对称熵损失函数下的最小风险同变估计、Bayes估计和M inimax估计,并讨论了[cT+d]1/2形式的估计量当0≤c0;c=c*,d≥0时是可容许的,当0c*,d>0时是不可容许的。
4) a symmetric entropy loss function
一种对称熵损失函数
5) symmetric entropy loss
对称熵损失
1.
The present paper consider risk of the restricted maximum likelihood estimators(RMLE) of order means of two sample distribution exponential,λ1≤λ2,with the same sample size,under symmetric entropy loss.
在对称熵损失下,讨论了样本容量相等时,两个指数总体均值iλ(i=1,2)的约束极大似然估计^iλ的风险,其中约束为λ1≤λ2。
2.
Under the conditions of entropy loss and symmetric entropy loss,Bayes estimation is discussed of any two general parameters with prior Burr distribution under order constraint.
分别在熵损失和对称熵损失函数下,讨论了序约束下对任何先验分布的两个Burr分布总体参数的Bayes估计。
6) Asymmetric loss functions
非对称损失函数
1.
Empirical Bayes Test for Truncation Parameters with Asymmetric Loss Functions Using NA Samples;
NA样本下非对称损失函数截尾参数的经验Bayes检验
补充资料:损失函数
损失函数
loss function
损失函数〔卜.云州地阅;uoTep‘柯田叫.a] 统计判定问题中,对于试验的每一种可能结局表示试验者损失(成本)的非负函数.设X是在样本空间任,刃,p,)(口‘。)中取值的随机变盘;D={心是根据X的实现关于参数a可以作出的一切可能判决的空间.在决策函数理论中,定义在OxD上的任一非负函数L称为损失函数.当参数的真值为e时(e‘O),损失函数L在任一点(a,d)任exD的值表示作出判决d(d〔D)所造成的损失.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条