2) q-symmetric entropy loss function
q-对称熵损失函数
1.
Parameter estimation of geometric distribution under Q-symmetric entropy loss function;
Q-对称熵损失函数下几何分布参数估计
2.
Parameter estimation of Poisson distribution and binomial distribution under Q-symmetric entropy loss function
Q-对称熵损失函数下的Poisson分布及二项分布的参数估计
3.
In this paper,we define the q-symmetric entropy loss function on the basis of the symmetric entropy loss function.
本文在对称熵损失函数的基础上定义了q-对称熵损失函数,并用参数估计的方法研究了在q-对称熵损失函数下Gamma分布的尺度参数的最小风险同变估计(MRE)、贝叶斯(Bayes)估计、最小最大(Mininax)估计等。
3) q-symmetric entropy loss function
q对称熵损失函数
1.
By means of the parameter estimation,we give the Bayesian estimation,the minimum risk equivalent estimation and the minimax estimation of scale parameter σ under the q-symmetric entropy loss function in the normal distribution,its mean of which is 0.
用参数估计的方法,研究均值为0的正态分布中刻度参数在q对称熵损失函数下的最小风险同变估计、Bayes估计和M inimax估计,并讨论了[cT+d]1/2形式的估计量当0≤c0;c=c*,d≥0时是可容许的,当0c*,d>0时是不可容许的。
4) symmetric entropy loss
对称熵损失
1.
The present paper consider risk of the restricted maximum likelihood estimators(RMLE) of order means of two sample distribution exponential,λ1≤λ2,with the same sample size,under symmetric entropy loss.
在对称熵损失下,讨论了样本容量相等时,两个指数总体均值iλ(i=1,2)的约束极大似然估计^iλ的风险,其中约束为λ1≤λ2。
2.
Under the conditions of entropy loss and symmetric entropy loss,Bayes estimation is discussed of any two general parameters with prior Burr distribution under order constraint.
分别在熵损失和对称熵损失函数下,讨论了序约束下对任何先验分布的两个Burr分布总体参数的Bayes估计。
5) Q-symmetric entropy
Q对称熵
1.
Parameter estimation of geometric distribution under Q-symmetric entropy loss function;
Q对称熵损失下几何分布的参数估计
6) q symmetric loss function
q对称损失函数
1.
The exact form of Bayes estimator is obtained,and its admissibility is discussed by using the p,q symmetric loss function L(λ,δ)=(λ/δ)p+(δ/λ)q-2(p,q∈Z+).
在p,q对称损失函数L(λ,δ)=(λ/δ)p+(δ/λ)q-2(p,q∈Z+)下,得到了参数λ的贝叶斯估计的精确形式并讨论了它的可容许性,最后研究了参数λ的最大后验区间估计。
补充资料:对称与非对称
反映客观事物在结构、功能、时空上的特殊联系的范畴。对称指事物以一定的中介进行某种变化时出现的不变性,非对称指事物以一定的中介进行某种变化时出现的可变性。在自然界中普遍存在,形式多样。对称有空间对称(包括形象对称和结构对称)、时间对称、概念对称等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条