1) reduced ideal
既约理想
1.
By giving the reduced ideal of the ring and obtaining the folow results:①Every ideal of the ring can be written as intersection of some reduced ideals.
引进了环的既约理想的概念,研究了既约理想的性质并得出了理想分解的两个结论:1。
2) rational & reduced true fraction
有理既约真分式
1.
By applying polynomial functions Taylor formula, the paper presents another method for transforming the rational & reduced true fraction into the partial fraction.
利用多项式函数的泰勒公式,给出了把有理既约真分式化为部分分式的一种方法,并用例子具体说明了这种方
3) ideal constraint
理想约束
1.
In general mechanical documents, the exposition of the basic types of ideal constraints is incomplete, and even inaccurate.
许多一般力学文献中 ,对理想约束基本类型的阐述不够完整 ,有的甚至不够准确。
2.
By means of the fractions of the equation of the non一ideal constrained motion of the particle along the plane curve on the tangential direction and normal direction,the motion speed expression of the particle under this condition is derived,the constrained counter force is further gained,thus some non一ideal constraint problems are solved from the given angle.
通过质点沿平面曲线的非理想约束运动方程在切线和法线方向上的分式 ,导出质点这一条件下的运动速度表示式 ,并进一步求出其约束反力 ,从一定角度解决一些非理想约束问
3.
Ideal constraint can be divided into complete ideal constraint or incomplete ideal constraint according as generalized ideal constraint forces equal to zero or not.
对于理想约束,按照广义理想约束力是否为零,把理想约束分为完全理想约束和不完全理想约束。
4) ideal constraint force
理想约束力
1.
The ideal constraint force of 1-order nonholonomic constraint;
一阶非完整约束的理想约束力
5) reducible left ideal
可约左理想
6) irreducible ideal
不可约理想
补充资料:既约多项式
又称“不可约多项式”。次数大于零的有理数系数多项式,不能分解为两个次数较低但都大于零的有理数系数多项式的乘积时,称为有理数范围内的“既约多项式”。在实数或复数范围内,也有相应的定义。实数范围内的既约多项式是一次或某些二次多项式,复数范围内的既约多项式必是一次多项式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条