1) biparabolic equation
双抛物型方程
1.
For solving biparabolic equation, the author presents two new classes of three layered implicit difference schemes with tridigonal matrix of coefficients.
提出解双抛物型方程的两类新的具三对角线型系数矩阵的三层隐式差分格式 ,其局部截断误差阶分别为O(τ2 +h2 +τh)及O(τ2 +h2 +(τh) 2 ) 。
2) hyperbolic-parabolic equation
双曲-抛物型方程
1.
The singularly perturbed generalized initial-boundary value problem for the hyperbolic-parabolic equation is considered.
讨论了一类奇摄动双曲-抛物型方程广义初边值问题,在适当的条件下,用Galerkin方法研究了广义解的存在性、唯一性,同时得到了解的渐近估计式。
3) parabolo-hyperbolic mixed equation
抛物双曲混合型方程
1.
Using the D Alembert formula and the Fourier method, the solution of the moving boundary problem for the nonhomogeneous parabolo-hyperbolic mixed equation of the second order is obtained in this paper.
本文运用D’Alembert公式和Fourier方法,求出了一类非齐以二阶抛物双曲混合型方程移动边界问题的解。
2.
using the Riemann method and the Fourier method,this paper discusses a class of boundary problems for the parabolo-hyperbolic mixed equation of second order with a moving boundary.
利用Riemann方法和Fourier方法讨论了二阶抛物双曲混合型方程带有移动边界的一类边值问题。
3.
This paper studies the boundary problem for the parabolo-hyperbolic mixed equationof third orderunder the boundary conditions:It is proved in this paper that the problem is correct if and only if a≠0.
本文研究三阶抛物双曲混合型方程带有边界条件的边值问题。
4) Doubly nonlinear parabolic equation
双非线性抛物型方程
5) parabolic partial differential equation
抛物型方程
1.
In this paper,the author studies the distribution of the solutions of the parabolic partial differential equations.
通过分部积分法、Cauchy不等式和Gronwall不等式来研究一类抛物型方程的解的分布情况,通过上述方法得出抛物型方程的能量模估计,最后由该能量模估计直接说明混合问题解的唯一性。
2.
A kind of finite volume element scheme for one dimensional parabolic partial differential equation with initial and Dirichlet boundary condition is presented,and it is proved that the scheme has second order convergence accuracy with respect to discrete L 2 norm and discrete H 1 seminorm.
针对一维抛物型方程初边值问题提出了一种新型的有限体积元格式 ,证明了该格式按离散 L2模及离散 H1半模具有二阶收敛精度 。
3.
An inverse problem for unknown source term in semilinear parabolic partial differential equation on bounded domain R n is considered in the following u t-Lu=φ(x,t)s(u)+γ(x,t), (x,t)∈Ω×(0,T), u(x,0)=u 0, x∈Ω, u n| Ω×(0,T) =g(x,t), u(x 0,t)=f(t), 0<t<T.
讨论了 Rn中有界域Ω上如下半线性抛物型方程未知源反问题ut- L u =φ(x,t) s(u) +γ(x,t) , (x,t)∈Ω× (0 ,T) ,u(x,0 ) =u0 , x∈Ω , u n| Ω× (0 ,T) =g(x,t) ,u(x0 ,t) =f (t) , 0
6) parabolic equation
抛物型方程
1.
Identifying coefficient of the parabolic equation by using the optimization method;
利用优化方法确定抛物型方程的未知系数
2.
On a class of the solution of parabolic equations with nonlocal boundary conditions;
关于非局部边界条件抛物型方程组的解
3.
The well-posed problem of parabolic equations under second boundary condition;
第二边界条件下抛物型方程反问题解的适定性
补充资料:抛物型偏微分方程
抛物型偏微分方程 parabolic type,partial differential equation of 偏微分方程的一类。最典型的是热传导方程 (a>0) (1)基本解是点热源的影响函数。若在t=0时在(ξ,η,ζ)处给定单位点热源,即u0(x0,y0,z0,0)=δ(ξ,η,ζ)(δ为狄拉克函数),则当t>0时便引起在R3的温度分布,这就是基本解。用傅里叶变换可得到它的表达式 热传导方程初值问题的解可用基本解叠加而成,即的解为 极值原理:一个内部有热源的传导过程,它的最低温度一定在边界上或初始时刻达到。更强的结论是 :如果t=T时在Ω内某一点达到最低温度 ,则在这个时刻以前(t<T时)u≡常数 ;又:若最低温度在t=T时边界¶Ω上某点P达到,则在这点上|P,Τ<0(n为外法线方向)。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条