1) parabolic equation technique
抛物型方程方法
2) parabolic partial differential equation
抛物型方程
1.
In this paper,the author studies the distribution of the solutions of the parabolic partial differential equations.
通过分部积分法、Cauchy不等式和Gronwall不等式来研究一类抛物型方程的解的分布情况,通过上述方法得出抛物型方程的能量模估计,最后由该能量模估计直接说明混合问题解的唯一性。
2.
A kind of finite volume element scheme for one dimensional parabolic partial differential equation with initial and Dirichlet boundary condition is presented,and it is proved that the scheme has second order convergence accuracy with respect to discrete L 2 norm and discrete H 1 seminorm.
针对一维抛物型方程初边值问题提出了一种新型的有限体积元格式 ,证明了该格式按离散 L2模及离散 H1半模具有二阶收敛精度 。
3.
An inverse problem for unknown source term in semilinear parabolic partial differential equation on bounded domain R n is considered in the following u t-Lu=φ(x,t)s(u)+γ(x,t), (x,t)∈Ω×(0,T), u(x,0)=u 0, x∈Ω, u n| Ω×(0,T) =g(x,t), u(x 0,t)=f(t), 0<t<T.
讨论了 Rn中有界域Ω上如下半线性抛物型方程未知源反问题ut- L u =φ(x,t) s(u) +γ(x,t) , (x,t)∈Ω× (0 ,T) ,u(x,0 ) =u0 , x∈Ω , u n| Ω× (0 ,T) =g(x,t) ,u(x0 ,t) =f (t) , 0
3) parabolic equation
抛物型方程
1.
Identifying coefficient of the parabolic equation by using the optimization method;
利用优化方法确定抛物型方程的未知系数
2.
On a class of the solution of parabolic equations with nonlocal boundary conditions;
关于非局部边界条件抛物型方程组的解
3.
The well-posed problem of parabolic equations under second boundary condition;
第二边界条件下抛物型方程反问题解的适定性
4) parabolic differential equation
抛物型方程
1.
A new alternating direction implicit difference method for three-dimensional parabolic differential equations with homogeneous boundary conditions;
三维齐次边界抛物型方程的新型交替方向差分格式
5) parabolic equations
抛物型方程
1.
The stability analysis of difference schemes for the parabolic equations;
抛物型方程差分格式的稳定性分析
2.
Viscosity solutions for a class of parabolic equations;
一类抛物型方程的粘性解
3.
In this paper,the forced oscillation of solutions for a class of nonlinear impulsive delay parabolic equations was studied.
研究一类非线性脉冲时滞抛物型方程解的强迫振动性,借助Green定理将多维振动问题转化为关于某一类非齐次脉冲时滞微分不等式的一维问题,获得了这类方程在2类不同边值条件下解强迫振动的若干新的充分条件。
6) parabolic type equation
抛物型方程
1.
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4).
用待定参数法构造了解一维抛物型方程的分支稳定的高精度显式差分格式 ,截断误差为O(△t4△x4) ,稳定性条件为r=α△t/△x2 <1 /2 。
补充资料:抛物型偏微分方程
抛物型偏微分方程 parabolic type,partial differential equation of 偏微分方程的一类。最典型的是热传导方程 (a>0) (1)基本解是点热源的影响函数。若在t=0时在(ξ,η,ζ)处给定单位点热源,即u0(x0,y0,z0,0)=δ(ξ,η,ζ)(δ为狄拉克函数),则当t>0时便引起在R3的温度分布,这就是基本解。用傅里叶变换可得到它的表达式 热传导方程初值问题的解可用基本解叠加而成,即的解为 极值原理:一个内部有热源的传导过程,它的最低温度一定在边界上或初始时刻达到。更强的结论是 :如果t=T时在Ω内某一点达到最低温度 ,则在这个时刻以前(t<T时)u≡常数 ;又:若最低温度在t=T时边界¶Ω上某点P达到,则在这点上|P,Τ<0(n为外法线方向)。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条