1) pseudoparabolic equation
伪抛物型方程
1.
This paper deals with a class of inverse problems of determining the unknown source term for the pseudoparabolic equation.
讨论了一类伪抛物型方程未知源项的存在性和唯一性问题。
2.
This paper deals with a class of inverse problems to determine the constant coefficient for the pseudoparabolic equation with special initial condition.
文章讨论了一类具有特殊初值条件的伪抛物型方程确定常数系数的反问题。
3.
Combining Riemann′s method with the fixed point theory effectively,we study a class of backwards heat flow problems of one-dimensional nonlinear pseudoparabolic equations,and obtain the existence and uniqueness of the solution of the inverse problem.
将Riemann函数方法与不动点理论有效地结合起来,研究了一类一维非线性伪抛物型方程的后向热流问题,得出了反问题解的存在唯一性结论。
2) pseudo-parabolic equation
伪抛物型方程
1.
A weak solution to the viscous Laplacian evolution equation with nonlinear source(a pseudo-parabolic equation) is proved to be in existence by using the time-discrete method.
用时间离散化方法证明了一个粘性非线性源的p-Lap lace发展方程(此方程为伪抛物型方程)初边值问题弱解的存在性。
2.
The first type studied in this paper is pseudo-parabolic equation.
研究的第一类发展型方程——伪抛物型方程具有广泛的应用背景,特别在非传统密码体制——热流密码体制中也有应用模型。
3) pseudoparbolic equation system
伪抛物型方程组
4) Pseudoparabolic Complex Equation
伪抛物型复方程
5) pseudoparabolic equations
伪抛物方程
1.
In this paper, we discuss a class of perturbation problems for pseudoparabolic equations with a singular inhomogeneous term and prove that the existence and limit behaviour of generalized solutions to the perturbation problems, moreover we botain that the solutions of perturbation problems converge to the solutions of the original problems in a certain sense as tends to zero.
本文讨论了一类具奇异右端项的伪抛物方程的初边值问题的摄动,证明了振动问题 广义解的存在性及极限性态,并得到了当趋于零时,摄动问题的解在一定意义下收敛于原问 题的解。
2.
In this paper, a class of non_linear and non_local boundary value problems for pseudoparabolic equations is discussed.
讨论了伪抛物方程的一类非线性非局部边值问题,得到了当区域固定时解的存在唯一性,并就当区域变化时解的极限性态进行了探
6) nonlinear pseudo-parabolic partial equation
非线性伪抛物型方程
1.
The aim of this paper is to investigate mixed problem for some nonlinear pseudo-parabolic partial equations.
文章讨论了一类非线性伪抛物型方程的混合问题。
补充资料:抛物型偏微分方程
抛物型偏微分方程 parabolic type,partial differential equation of 偏微分方程的一类。最典型的是热传导方程 (a>0) (1)基本解是点热源的影响函数。若在t=0时在(ξ,η,ζ)处给定单位点热源,即u0(x0,y0,z0,0)=δ(ξ,η,ζ)(δ为狄拉克函数),则当t>0时便引起在R3的温度分布,这就是基本解。用傅里叶变换可得到它的表达式 热传导方程初值问题的解可用基本解叠加而成,即的解为 极值原理:一个内部有热源的传导过程,它的最低温度一定在边界上或初始时刻达到。更强的结论是 :如果t=T时在Ω内某一点达到最低温度 ,则在这个时刻以前(t<T时)u≡常数 ;又:若最低温度在t=T时边界¶Ω上某点P达到,则在这点上|P,Τ<0(n为外法线方向)。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条