1) Marcinkiewcz-Zygmund strong laws of large numbers
Marcinkiewcz-Zygmund强大数定律
1.
The Marcinkiewcz-Zygmund strong laws of large numbers and complete convergence are established for weighted sums of negatively associated random variables under certain moments both on the weights and the distribution.
该文研究了NA随机变量序列加权和的Marcinkiewcz-Zygmund强大数定律和完全收敛性。
2) Marcinkiewicz-Zygmund strong law of large numbers
Marcinkiewicz-Zygmund强大数定律
1.
Second, as an application of the deviation inequality, we get Marcinkiewicz-Zygmund strong law of large numbers.
首先,用Chebyschev不等式,我们得到V(n,p)的一个偏差不等式;然后,作为一个应用我们得到孤立点个数的Marcinkiewicz-Zygmund强大数定律;最后,用Stirling公式和G(?)rtner-Ellis定理,我们给出V(n,p)所满足的中偏差原理。
2.
The Marcinkiewicz-Zygmund strong law of large numbers and complete convergence are obtained for weighted Sums of NA random variables by using Rosenthal-type maximal inequality.
利用Rosenthal型最大值不等式,得到了NA随机变量加权和的Marcinkiewicz-Zygmund强大数定律和完全收敛性,所获结果推广和改进了一些文献中相应的结果。
3) Marcinkiewicz-Zygmund strong law
Marcinkiewicz-Zygmund强大数律
1.
The Marcinkiewicz-Zygmund strong law is showed under certain moment conditions of both the weights and distribution.
证明了在某种矩条件下,加权和T-n=∑-i≤-na-n-iX-i的Marcinkiewicz-Zygmund强大数律。
4) Marcinkiewicz Zygmund strong law
Marcinkiewicz-Zygmund强律
5) strong law of large numbers
强大数定律
1.
A strong law of large numbers for NA random sequences;
关于NA序列的强大数定律
2.
A strong law of large numbers for mth order countable nonhomogeneous Markov chains;
关于可列m重非齐次马氏链的一个强大数定律
3.
A note on the classic strong law of large numbers;
关于经典强大数定律的一点注记
6) the strong law of large numbers
强大数定律
1.
Some results of the strong law of large numbers under negative association are obtained by using a maximal inequality.
本文利用Hajek-Renyi型最大值不等式得到了一类负相依随机变量序列的强大数定律,从而使某些已知结果为其特例。
2.
In this paper, the strong law of large numbers of -mixing r.
研究混合随机变量序列 {Xn}的强大数定律 。
补充资料:强大
1.亦作"强大"。 2.谓力量坚强雄厚。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条