1) strong law of large numbers in stochastic sense
随机强大数定律
1.
This Paper deals with problems of large number theorem in stochastic sense and obtains sufficient and necessary conditions,for weak law and strong law of large numbers in stochastic sense.
本文讨论随机大数定律,得到一个随机变量序列分别服从随机弱大数定律和随机强大数定律的充要条件。
2) weak law of large numbers in stochastic sense
随机弱大数定律
1.
sufficient and necessary conditions for weak law of large numbers in stochastic sense are given.
本文讨论随机大数定律 ,得到随机变量序列服从随机弱大数定律的充要条件。
3) strong law of large numbers
强大数定律
1.
A strong law of large numbers for NA random sequences;
关于NA序列的强大数定律
2.
A strong law of large numbers for mth order countable nonhomogeneous Markov chains;
关于可列m重非齐次马氏链的一个强大数定律
3.
A note on the classic strong law of large numbers;
关于经典强大数定律的一点注记
4) the strong law of large numbers
强大数定律
1.
Some results of the strong law of large numbers under negative association are obtained by using a maximal inequality.
本文利用Hajek-Renyi型最大值不等式得到了一类负相依随机变量序列的强大数定律,从而使某些已知结果为其特例。
2.
In this paper, the strong law of large numbers of -mixing r.
研究混合随机变量序列 {Xn}的强大数定律 。
5) strong law of large number
强大数定律
1.
In this paper, we will construct a sort of nondecreasing singular function by the realization of Markov Chain on the space and by using of strong law of large numbers for nonhomogencous Markov chain.
本文目的是通过马氏链在空间上的实现 ,利用非齐次马氏链强大数定律构造一类不减的奇异函数。
2.
In this paper,it is proved that a strong law of large numbers double array discrete variable1n 2ni=1iX (n) i.
论证了双下标离散型随机变量和 1n2 ni=1 i X( n)i 的强大数定律 ,结论表明离散型随机变量和连续型随机变量所得结果是不同
3.
In this paper, we study the convergences and the growth of bi-random Dirichlet series by the strong law of large numbers for independent and non-equally distributed random variables, and obtain some new result.
利用独立不同分布的随机变量序列的强大数定律研究了双随机狄里克莱级数的收敛性和增长性 ,得到了一些新的结果 。
6) strong laws of large numbers
强大数定律
1.
In this paper,we obtain some strong laws of large numbers for arbitrary stochastically dominated random variables by means of the convergence theorem for martingale difference sequence.
ξ利用鞅差序列几乎处处收敛定理,给出受控随机序列的若干强大数定律。
2.
The theorems improve former results and establish that receive the difference between the week laws of large numbers and the strong laws of large numbers.
利用一致有界条件,建立弱大数定律,改进了目前的某些结果,并找到弱大数定律与强大数定律的内在差别。
3.
We establish the week laws and strong laws of large numbers by using the uniformly bounded conditions.
利用一致有界条件,建立了弱大数定律和强大数定律。
补充资料:随机数和伪随机数
随机数和伪随机数
random and pseudo-randan numbers
随机数和伪随机数【喇间佣1 al川牌”山一喇闭..m.山娜;cJI了,a如曰e”nce,口oc月卿成.以叹“c月a】 数亡。(特别,二进制数:。),其顺序出现,满足某种统计正则性(见概率论(probability Uleory)).人们是这样区别随机数(mndomn切mbe比)和伪随机数(PSeudo一mn由mn切mbe岛)的,前者由随机的装置来生成,而后者是用算术算法构造的.总是假设(出于较好或较差的理由)所得(或所构造)的序列具有频率性质,这些性质对于具有分布函数F(z)的某随机变量心独立实现的一个序列来说是“典型的”;因此人们称作根据规律F(习分布的(独立的)随机数.最经常使用的例子为:在区间【O,l]上均匀分布的随机数亡。,尸(亡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条