说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 独立随机变元
1)  i.i.d random elements
独立随机变元
2)  Independent random vectors
独立随机元
3)  sums of i.i.d. random elements
独立随机元的和
4)  independent random variables
独立随机变量
1.
On the Basis of a these results, the Egorov s results for independent random variables are generalized to the case of negatively associated random variables.
给出了具有不同分布的NA随机变量列满足的若干强大数律;作为应用,不仅将独立随机变量的一类强极限定理完整的推广到NA随机变量情形,而且关于NA随机变量的一些已有结果可以作为推论得出。
2.
According to the Wittman strong law of large numbers of independent random variables,the Wittman strong law of large numbers of PA random variables sequences is extanded so that some deductions are obtained in this paper.
文章根据独立随机变量序列的Wittmann型强大数律,推广到PA序列的Wittmann型强大数律,并且由此得到一些相关的推论。
3.
In this paper,we consider asymptotic structure for the product of partial sums of independent random variables.
假设X1,X2,…,Xn,…为二阶矩存在的非负独立随机变量列,证明收敛性nk=1!μSkk"#1γk$%1&Tn→d e&2N成立,其中N是标准正态随机变量,Sk=ki=1(Xi,μk=E(Sk),σk=Var(Sk),γk=σk/μk,且Tn=nk=1(k/σk。
5)  Independent Random Variable
独立随机变量
1.
Central Limit Theorems of Independent Random Variables;
独立随机变量的中心极限定理
2.
Formula of density function of sum of independent random variable of uniform distribution;
服从均匀分布的多个独立随机变量和的密度函数公式
3.
Let {Xn,n≥1} be independent random variables in a real separable Banach space,and the Chung-Teicher type conditions for the SLLN under the assumptions that the weak laws of large numbers hold were doscissed,which is b-1n∑nk=1(Xk-EXkI(‖Xk‖≤bk))p0 holds if and only if b-1n∑nk=1(Xk-EXkI(‖Xk‖≤bk))a.
设{Xn,n≥1}是实可分Banach空间独立随机变量,讨论了在弱大数律的假设下使得Chung-Teicher型强大数律也成立,即bn-1∑nk=1(Xk-EXkI(‖Xk‖≤bk))p0当且仅当bn-1∑nk=1(Xk-EXkI(‖Xk‖≤bk))a。
6)  sum of independent random variables
独立随机变量和
补充资料:独立增量随机过程


独立增量随机过程
tochastic process with independent increments

独立增里随机过程「劝刘巨浦c拌.义冠弓初山侧吻创如t加盆,曰n臼lts;cjl抖浦.咸nP0uecc c Ite3洲cltMuM.uP-“P啊eHll,刚』 一种随机过程(s勿比邵石cp~)X(t),对任意自然数”和所有实数O蕊:,<口,簇:2<吞2簇…蕊,。<口。,增量X(乃;)一X(‘J),…,X(刀。)一X(,。)是相互独立随机变量,独立增量随机过程称为齐次的(holll。罗11印us),如果X(:+h)一X(。),0(戊,oO,当t’,t时 p{}Y(t‘)一Y(t)}>。}~0.W汹犯r过程(Wiemr Proo巴粥)和Pb远翔1过程(Po哪npr(x芜‘s)是随机连续的独立增量随机过程的例子(前者的实现以概率1连续,后者的实现是跳跃值等于l的阶梯函数).独立增量随机过程的一个重要例子是稳定过程(见稳定分布(stable面tribution)).随机连续的独立增量随机过程(以概率1)只有第一类间断点.这种过程的值的分布对任意t是无穷可分的(见无穷可分分布(inf谊此ly一山北ible dis州bution))可以用特征函数(chara叱ristic ftmct」on)方法研究独立增量随机过程.关于过程穿越边界的概率以及第一次穿越时间的概率分布等问题,可用所谓因子分解恒等式(fac-tori山tion jdenti往留)来解决.”协月片,巴爹‘人队见随饥双桂L StDchasl」e Process). 刘秀芳译陈培德校
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条