说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 随机相补问题
1)  Random complementarity problem
随机相补问题
2)  random F-implicit complementarity problem
随机向量F-隐相补问题
3)  Complementarity problem
相补问题
1.
We utilize Park s maximal element theorem in H-space to prove the existence theorems of solutions of the complementarity problems for multivalued non-monotone operators in Banach spaces.
应用H-空间中的Park极大元定理,在Banach空间中证明了多值非单调算子的相补问题的解的存在性定理。
2.
we introduce two new concepts on the implicit com plementarity and the complementarity problem for multivalued operator in Banachspaces, and we prove the existence theorems of solutions of the implicit complem entarity and the complementarity problems for multivalued monotone operator.
在 Banach空间中引入了多值算子的隐补问题和相补问题的新概念 ,并证明了多值单调算子隐补问题和相补问题解的存在性定理 。
3.
The purpose of this paper is to discuss the complementarity problems for monotone operators and coercive operators in nonlinear analysis, and to give the existence theorems of solutions for the complementarity problems.
讨论了单调算子和强制算子的相补问题 ,给出了解的存在性定理 。
4)  randomized question
随机问题
1.
Technique of randomized question reading CAPTCHA based on character feature;
基于字符特征的随机问题阅读式验证码技术
5)  stochastic problem
随机性问题
1.
Solution of stochastic problems with Monte-Carlo method;
运用蒙特卡罗方法求解随机性问题
6)  stochastic LQ problem
随机LQ问题
1.
Indefinite stochastic LQ problem with exponential stability degree constraint;
带指数稳定度约束的不定随机LQ问题
补充资料:随机过程论中的统计问题


随机过程论中的统计问题
statistical problems in the theory of stochastic processes

究对于探讨尸。与尸。可能的奇异性也是有用的. 例4假定观测或者为x(t)二w(t),其中w(0为一Wi印er过程(Wiener process)(H。假设),或者x(r)=州t)+w(t),其中附为一非随机函数(H,假设).如果m’6L2(0,T),则测度p(,,pl是相互绝对连续的,而如果。’必L:(0,T),则它们是相互奇异的.其似然比等于 d尸了 豆可Lx)-一{一合)〔优,(!)」2己亡·!川,(!)J·(亡)}· 例5.设x(t)二6十心(t),其中口为实参数而老(0为一零均值的平稳Gauss的Map珊过程(Markov妙cess),且有已知的相关函数厂(t)二。一“,‘,,:>0.此时测度尸子是相互绝对连续的,且有似然函数 dP不 万可气“)-一。p呀冬。二(。)、冬。二(:)、冬。:i、(才)‘: 一r tZ一’一、一’2“’一‘一‘2一才一‘一’- 一冬。2一牛。2::). 2“4-一j 特别地,x(o)+x(T)+:丁Jx(:)‘。关于族p万是一充分统计最(sul五cie以statistic), 随机过程统计中的线性问题.设观测了函数 血 x(。)二艺口,伞,(:)+七(:),(*) l其中奴t)是零均值且有己知的相关函数;(t,:)的随机过程,职,是已知的非随机函数,口二(0、,…,口*)是未知参数(口,为回归系数),而参数集0是R‘的一个子集.0,的线性估计是形如见c,二(t,)或其均方极限的估计量.找寻均方意义下的最优无偏线性估计的问题归结为解与r有关的线性代数或线性积分方程.事实上,最优估计目由对任何形如七=艺bj、(tj)且艺b,伞,(t,)=0的心组成的联立方程E。(吞,劲二0所确定.在若干情形下,当T~的时,用最小二乘方法渐近获得的O的估计,并不比最优线性估计坏,但前者在计算上更简单月.不依赖于:. 例6,在例5的条件下,k二1,中;(t)‘1.这时最优无偏线性估计最(血ea犷estin迫tor)为 、=.浩了「·(。)二(·)二)·(r)“亡{,而估计量T 。‘一喜f二(:)“。 T才-·一渐近地与之有相同的方差. G皿ss过程的统计问题.设{x(t):O蕊t簇T,p‘{}对所有口‘0为Gauss过程(Gaussian process).关于Gauss过程,有如下二者择一的结果:任何两个测度尸乙尸J或者相互绝对连续或者奇异.因为Gauss分布pJ是由其均值m。(:)二E。x(t)及其相关函数,。(s,t)=E,无(s)x(t)完全确定的,从而似然比d尸J/d尸J以一种复杂的方式由m。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条