1) Poincare bifurcation
Poincare分支
1.
In this paper, about the Melnikov function for a class perturbed system are discussed, we get an expression of M 2(h) of this system when M 1(h)≡0, and the number of limit cycles produced by Poincare bifurcation and Hopf bifurcation are study, For this system, if M 1(h)≡0 and M 2r(h)≡0, we get an integrated conclusion of the least upper-bound of the number of limit cycles of this system.
动Hamilten系统 ,给出了当其一阶Melnikov函数恒等于零时的二阶Melnikov函数的表达式 ,并由此研究了由该系统的Poincare分支及Hopf分支产生的极限环数目 ,得到了当二阶Melnikov函数不恒为零时 ,该系统的极限环个数的最小上界的完整结论 。
2.
The number of limit cycles of Hamiltonian systems under thrice and quartic polynomial perturbation are discussed by the theory of Poincare bifurcation and Hopf bifurcation,for these systems,ifM 1(h)≡0 and M 2(h)≡0, got an integrated conclusion of the least upper-bound of the number of limit cycles of these systems,i.
利用Poincare分支与Hopf分支的有关理论 ,讨论了一类扰动项是三次和四次多项式的Hamilton扰动系统的极限环个数问题 ,在该系统的一阶Melnikov函数恒为零但二阶Melnikov函数不恒为零的情况下 ,得到了这两个扰动系统的极限环数目的最小上界分别为B(4 ) =3和B(3) =2的结
3.
In this paper, about the problem of Poincare bifurcation and Hopf bifurcation for a class perturbed system are discussed, we get an estimate of the upper bound of the number of limit cycles when M 1(h)≡0 and M 2(h)0, this paper extend and deepen the conclusion of [4] and also fetch up some lack of [4].
本文讨论了一类扰动系统在其一阶 Melnikov函数恒为零 ,而二阶 Melnikov函数不恒为零时的 Poincare分支及 Hopf分支的有关问题 ,得到了该系统的极限环个数的上界估计 。
2) Poin-care-Cartan integral invariant
Poincare-Cartan积分
4) Poincare-Cartan integral invariant
Poincare-Cartan积分不变量
5) poincare sphere
Poincare球
1.
Under the help of maths tools, the authors induct Poincare sphere and Stokes son space unit sphere to express the stations of polarization, and study their connection.
本文借助数学工具,引入Poincare球与Stokes子空间单位球表示光的偏振态,并对二者关系进行了研究。
2.
We get used of Joanes vector and Stokes vector to express polarization stations as mathematics means,while their geometric expression is Poincare sphere.
常用的偏振光的表述由数学描述和几何描述两种,Joanes矢量、Stokes矢量是对其做数学描述,用几何方法通过Poincare球表示各种偏振态更显直观,Poincare球是其几何表述。
6) Poincare section
Poincare截面
1.
Computer simulation of Poincare section in the study of quantum chaos;
量子混沌研究中Poincare截面的计算机模拟
2.
Nonlinear analysis of the dynamic behaviors of multi - phases flow system is conducted by reconstructed phase space, Poincare section, correlation dimension and Kolmogorov entropy.
通过重构相空间、Poincare截面、分维和Kolmogorov熵等混沌分析方法对气液固三相并流流动系统的压力波动信号进行了定性研究,研究表明:此类系统存在有非线性混沌现象;并用确定性混沌分析方法对其压力波动信号作了进一步探讨。
3.
The Poincare section is defined in the sense so that it insects the orbit when the pitch angular acceleration crosses zero .
对自治非线性系统,还没有公认的方法选取合适的Poincare截面,特选俯仰角加速度为零的点作为广义Poincare截面上的点。
补充资料:单位元的连通分支
单位元的连通分支
connected component of the identity
连通分支,又例如伪止交么模群50印,q)能看作是连通复代数群Sq、(C)的实点构成之群,当p二0或q=0时,它是连通的,当p,q>0时,它分裂成两个连通的分支.然而,场Lie群G皿)是紧Lie群时,G。(R)是连通的单位元的连通分支t以..ed比d~侧瀚ept of theide时ty;eu”3皿.~喂“仆e汉职.叫目],单位元分支(identity。。rnponent),群G的 拓扑群(或代数群)G的包含此群的单位元的最大连通子集G“.分支G“是G的闭正规子群;G的关于G“的陪集就是G的连通分支,商群G/G”是完全不连通和Hausdorff的,且在G的所有使G/H完全不连通的正规子群H中,G“是最小的.如果G局部连通(例如,G为琉群),则G“在G中是开的,且G/G“是离散的. 对任意代数群G来说,单位分支也是开的,且它有有限指数;G”还是G中具有有限指数的极小闭子群.代数群的连通分支和不可约分支相同.对代数群G的任一多项式同态价,我们有中(Go)=仲(G))“.如果G是一域上代数群,则G“仍定义在此域上. 若G为复数域C上代数群,则它的单位分支G”和它作为复Lie群的单位分支相同.若G为实数域R上的群,则G“中实点构成之群G气R)按Lie群G(R)的拓扑它不一定连通,然而它的连通分支数有限.例如,虽然GL。们是连通的,可是GL。仅)分裂成两个
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条