说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 耗散广义Hamilton约束系统
1)  constrained generalized Hamiltonian system
耗散广义Hamilton约束系统
1.
For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent structure of dynamic system and the constraint-invariant.
 针对耗散广义Hamilton约束系统,通过引入拉格朗日乘子和采用投影技术,给出了一种保持动力系统内在结构和约束不变性的李群积分法· 首先将带约束条件的耗散Hamilton系统化为无约束广义Hamilton系统,进而讨论了无约束广义Hamilton系统的李群积分法,最后给出了广义Hamilton约束系统李群积分的投影方法· 采用投影技术保证了约束的不变性,引入拉格朗日乘子后,在向约束流形投影时不会破坏原动力系统的李群结构· 讨论的内容仅限于完整约束系统,通过数值例题说明了方法的有效性·
2)  constrained Hamiltonian system
约束Hamilton系统
1.
Based on the phase-space generating functional of Green function for a constrained Hamiltonian system with finite degree of freedom, the Noether theorem in quantum case under the global symmetry in phase space is derived for such a system.
基于有限自由度约束Hamilton系统的Green函数的相空间生成泛函,导出了该系统在相空间中整体对称下的量子形式Noether定理。
3)  constrained Hamiltonian systems
约束Hamilton系统
1.
Based on the canonical symmetries of constrained Hamiltonian systems, a counter-example to a conjecture of Dirac is given.
从约束Hamilton系统相空间中对称性分析 ,给出一个反例 。
4)  generalized Hamilton system
广义Hamilton系统
1.
Mei symmetry of generalized Hamilton systems with additional terms;
带有附加项的广义Hamilton系统的Mei对称性
2.
An algorithm for preserving structure of generalized Hamilton system;
广义Hamilton系统的保结构算法
3.
Using the method of infinitesimal transformations, a new invariance of the generalized Hamilton system under infinitesimal transformations of time and coordinates is studied.
用无限小变换的方法,研究广义Hamilton系统在时间和坐标的无限小变换下的一种新的不变性,并由这种不变性导出一类守恒量的存在条件和形式,给出寻找守恒量的一类新方法。
5)  generalized Hamiltonian system
广义Hamilton系统
1.
Lie symmetry and the conserved quantity of a generalized Hamiltonian system;
广义Hamilton系统的Lie对称性与守恒量
2.
Stability of unstable fixed point and unstable periodic solution in the controlled system is determined by the Routh-Hurwitz criterion and Melnikov s method in generalized Hamiltonian systems theory, respectively.
利用一种简单的线性状态反馈方法控制混沌运动 ,引导混沌系统稳定到失稳的平衡点或周期轨道上 ,用劳斯 胡尔维茨稳定判据判定受控系统在平衡点处参数的取值范围 ,同时使用广义Hamilton系统理论的Melnikov方法分析受控系统的周期解 。
3.
We propose an algorithm for preserving the canonical character of generalized Hamiltonian system.
本文在 Poisson流形上讨论广义Hamilton系统的保结构的数值解法 ,为广义 Hamilton系统的数值计算提供了理论基础。
6)  generalized Hamilton systems
广义Hamilton系统
1.
Conformal invariance and Hojman conserved quantities of generalized Hamilton systems;
广义Hamilton系统的共形不变性与Hojman守恒量
补充资料:Hamilton系统


Hamilton系统
HamQtoiiian system

  H如血朋系统【H翻山to面明匆创脚附:raM“月曰ouo.a cH-eTeMa」 由含有2九个未知量p=(p』,…,p,)(广义动量)与q=(q,,…,吼)(广义坐标)的常微分方程组一HaJT川幻n事修组(Ha面ltorha”哪teTn“f闪Ua-tlon‘) dP,_刁H刁叮,刁万 止卫止二一—.-二三二=止二乙‘f二l‘2.·…” dt刁q,’刁t刁Pi (l)描述的力学系统,其中H是(p,q,t)的某一函数,称为方程组(l)的H抽面物翻函数(Har回ton function)或Ha而!ton算子(Hax苗lton恤n)Halnjlton方程组亦称平则李程粤(~nhals岁temof闪UationS),并且在自治个削任(当H非t的显函数时)可称为保守系统(con-望n旧tives那记m),这是由于此时函数H(它常有能量含意)是首次积分(亦即能量在运动中保持不变). 在力学中Ha几亩ton方程组描述一个含有完全约束与具有位势(po让”tial)的力的运动(见H田面I翻川方程E以而lton闪Ua石0斑)).理论物理中许多问题也导致Halnjlton方程组或具有类似性质的偏微分方程,可以将后者看成Hamjlto们方程组的无穷维模拟来讨论.量子力学的方程可用Han川ton方程组的形式,其中几(t)与q,(t)不是时间的数值函数,而是满足一定的交换关系的依赖于t的自伴线性算子.H乏助ilt加方程组(依此词的平常“有限维”意义)在研究偏微分方程的某些渐近问题(波动方程的短波渐近式,量子力学中拟经典渐近式)中起重要作用. 各种变分原理与Ha仃川1011方程组有紧密联系.H七haho七原理(例如见!3])直接导致Halnjlton方程组,然而并非经常使用.最重要的原理是H如血阅-伍印orpa解。益原理(Han山to刀一伪tID脚dski Prindnle),即稳定作用原理,它直接产生1典户l攀方程(力学中的)(I刁脚刊笋闪mt沁飞(inn长℃玩I毗));若带有某种非退化的附加条件,则可以利用1确笋目代变换(L他-e址比姗出lblm)(见H助间翻旧函数(枷耐tonfL川c-tlon);H如川加犯方程(H舰回ton叫UationS))从至刁g份卿方程过渡到H助间ton方程组,如果在应用变分原理时只涉及一阶导数.如果变分原理涉及一阶以上导数,过渡到HaTnjlton方程组的M.B.ocrporPa那翎百法则变得更为复杂些(例如,见[41,圣110). 若H不是q‘的显函数,则几二常数为首次积分.在此情形下,坐标q‘称为嶂巧的(cyclic)(在某些情形下,它有角变量的物理或几何意义)或可忽视的(】朗。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条