1) hierarchical granulation of knowledge
分层知识粒度
2) Knowledge granularity
知识粒度
1.
Study on knowledge granularity and relationship between knowledge granularities based on rough sets;
基于粗糙集的知识粒度及粒度关系研究
2.
Description and discovery method of manufacture process knowledge granularity;
制造工艺知识粒度描述方法与获取算法研究
3.
Web Document Clustering Based on Knowledge Granularity;
基于知识粒度的Web文档聚类研究
3) granularity of knowledge
知识粒度
1.
Research on Attribute Reduction Based on Granularity of Knowledge in Incomplete Knowledge Systems and Its Application;
基于知识粒度的不完备信息决策系统的属性约简及其应用
2.
Proposed the concept of granule amount of knowledge,granule seed and granularity,proved its dull relation between knowledge roughness and its correspondent granularity in rough set theory,declared that knowledge roughness is closely related to granule amount of knowledge,granule seed of knowledge and granularity of knowledge.
知识粒度的概念从物理意义上反映了知识库中的知识颗粒状结构的本质。
3.
Based on variable precision rough set theory, this paper discusses granularity of knowledge in with approximation and quality of classification, then presents that a nested sequence of equivalence relations can lead to a hierarchical granulation on various levels of confidence β and quality of classification γ.
本文在研究变精度粗糙集模型中的近似、分类质量与知识粒度关系的基础上,提出了利用嵌套的等价关系集,可以构造基于不同置信阈值β、不同级别分类质量γ的分层知识粒度,并设计了相应的算法,最后以实例构造了分层知识粒度结构图。
4) Knowledge granulation
知识粒度
1.
Based on decision table,the paper discusses its internal granular essence,researches the relationship between knowledge granulation and the number of attributes or the change of attribute value,and establishes the dynamic relation between knowledge granulation and the credibility of rules.
针对决策表,探讨了其内在的粒度思想,研究了属性个数增减、属性取值改变对知识粒度变化的影响,并建立了知识粒度与规则确信度之间的动态关系,为决策表进行决策分析提供了科学依据。
2.
The relationships among knowledge granulation,information quantity and class feature matrices were discussed.
针对目前决策表属性约简的计算问题,研究了粗糙集理论中差别矩阵,讨论了知识粒度与信息量、类别特征矩阵之间的关系,利用知识粒度最大的属性生成较小的类别特征矩阵,设计了新的启发式规则来快速缩小搜索空间和最小化属性选择,提出了一个基于知识粒度的最小属性约简算法,并用一个实例证明了算法的正确性。
5) partially believable knowledge
分层信度知识
1.
An extension of the description logic SHOIN(D),called PB-SHOIN(D),is proposed to deal with partially believable knowledge with different levels.
对描述逻辑SHOIN(D)进行扩展,提出一种能处理分层信度知识的描述逻辑PB-SHOIN(D),给出了PB-SHOIN(D)的语法和语义,并证明了PB-SHOIN(D)具有超协调性和非单调性,为表示和处理语义Web中具有分层信度的知识提供了一种有效方法。
补充资料:垂向分层理论
垂向分层理论
stratification theory of grains in vertical direction
ehuix旧ng feneeng Iilun垂向分层理论(stratifieation theory of grainsin vertieal direetion)对重选过程中矿粒群在介质中作垂向分层运动机理的阐释。在重选设备内堆置或铺置的动态矿粒群称作床层。借助介质的垂直流动、沿斜面流动或作回转运动使床层松散,是粒群发生分层转移的先决条件。分层是指矿物粒群按密度差形成不同的矿物层;颗粒的粒度以及形状对分层也有重要影响。对于分层的发生机理,曾经有过多种见解,但归纳起来不外两类观点。一类是动力学分层学说,认为分层是按个别颗粒在介质中的运动差异发生的(见自由沉降速度差分层学说、干涉沉降速度差分层学说);另一类是静力学分层学说,认为分层是粒群整体的内在不平衡因素引发的(见悬浮体密度差分层学说、位能分层学说和重介质分层学说)。前一类学说强调了流体动力对颗粒运动的影响,而忽略了颗粒间的静力作用;后一类学说的立论观点则忽视了流体动力对分层的影响,而将床层内颗粒或颗粒群间的静力差异视为分层的决定性因素。 (孙玉波)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条