说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 域的Schwarz常数
1)  Schwarz constant of domain
域的Schwarz常数
2)  Schwarz derivative
Schwarz导数
1.
Schwarz derivative was used to quantify the changing process for the system according to the chaotic characteristics.
通过对上海证券综合指数动力学模型的混沌特性进行深入研究 ,针对模型的混沌特性 ,应用Schwarz导数对系统的演化过程做了定量描述 ,利用Sharkovskii定理和符号动力学对模型的相图、分叉图、暗线方程进行了分析 ,得到了系统的MSS序列 ,给出该模型不稳定轨道和混沌参数区间的确定方法·为证券市场中的内在规律的研究发展 ,提供了一个有益的探讨 ,为非线性混沌动力学理论在经济学的应用做了有益的尝
2.
In this paper considers differential equation with negative Schwarz derivative x′(t)=r(t)f(x([t])),t≥0 where r∈C(R+,R+) f∈C3(R,R),xf(x)>0 ifx≠0 satisfying below bounded conditions and having everywhere negative Schwarz derivative.
考虑具负Schwarz导数的分段常数微分方程x(′t)=r(t)f(x([t])),t≥0,其中r(t)非负连续,f有下界且具有负Schwarz导数,f∈C3(R,R),xf(x)<0,当x≠0,f′(0)<0,[。
3.
The relation between limit from the left(or right) and Schwarz derivative are obtained,and an inequation is built with Schwarz derivative.
研究Schwarz导数,在已有成果基础上给出了在一点单侧极限与Schwarz导数的关系,以及一定条件下,由Schwarz导数构成的不等式。
3)  Schwarz function
Schwarz函数
1.
In this paper, some coefficient inequalities of Schwarz function are proved, and the following result is obtained: when f(z)=∑∞n=0a nz n is subordinate to g(z)=∑∞n=0b nz n,then |a 4|≤1 791 11·max{|b 1|,|b 2|,|b 3|,|b 4|}.
证明了关于Schwarz函数的系数的几个不等式 ,得到了如下的结果 :当 f(z) =∑∞n=0anzn从属于 g(z) =∑∞n=0bnzn 时 ,|a4|≤ 1 791 1 1 ·max{|b1| ,|b2 | ,|b3| ,|b4|}。
2.
A coefficient inequality of Schwarz function is proved in this paper,and the following resulf is obtained:if f(z)=∞n=0a nz n is subordinate to g(z)=∞n=0b nz n, then |a 3|≤2 max {|b 1|,|b 2|,|b 3|},and the bownd is sharp.
讨论 Schwarz函数的系数不等式 ,证明了当 f(z) = ∞n=0anzn 从属于 g(z) = ∞n=0bnzn时 ,| a3|≤ 2 max{ | b1 ,| b2 | ,| b3| } ,并且等号是可达的 。
4)  Schwarzian derivative
Schwarz导数
1.
A property of the Schwarzian derivative in Kler manifolds;
Kler流形上Schwarz导数的一个性质
2.
Some notes on Schwarzian derivative;
关于Schwarz导数的注记
3.
We introduced the properties of Schwarzian derivative .
文章将从Schwarz导数的来源开始介绍其性质 ,研究其周期性与奇偶性 ,并应用其性质证明一个有关多项式的定理。
5)  the Stronger Schwarz Derivative
强Schwarz导数
1.
The Basic Theorem of Integrable-differential on the Stronger Schwarz Derivative;
关于强Schwarz导数的微积分学基本定理
6)  Pre-Schwarzian derivative
pre-Schwarz导数
1.
The inner radius of univalency of plane domains by pre-Schwarzian derivative is studied in this paper,especially the lower bounds of inner radiuses for the domain bounded by a hyperbola and the outer domain of a triangle are obtained.
本文主要研究了平面区域的pre-Schwarz导数单叶性内径问题,给出了双曲线右支左侧区域及三角形外部区域等常见区域的单叶性内径的下界估计。
2.
The inner radius of univalency of plane domains by pre-Schwarzian derivative is studied,especially the lower bounds of inner radiuses for the domain bounded by a hyperbola and the outer domain of a triangle are obtained.
研究了平面区域的pre-Schwarz导数单叶性内径问题,给出了双曲线一支外侧区域及三角形外部区域的单叶性内径的下界估计。
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)

伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条