1) Set-valued Local Martingale
![点击朗读](/dictall/images/read.gif)
集值局部鞅
2) Set-valued Local Square Integral Martingale
![点击朗读](/dictall/images/read.gif)
集值局部平方可积鞅
3) local martingale
![点击朗读](/dictall/images/read.gif)
局部鞅
1.
Representation of infinite dimensional stochastic integral with continuous local martingale;
连续局部鞅的无穷维随机积分表示
2.
Employing the property of constant return of two dimensional Brown motion and some properties of Markov process and two dimensional continuous local martingale, a new proof of famous classical proposition is given in this paper by means of stochastic analysis.
应用二维 Brow n 运动的常返性质、 Markov 过程及二维连续局部鞅的一些性质,通过随机分析的方法,对著名的古典问题给出了一个新的证明,证明过程体现了随机分析方法的优越特点。
3.
Obtains an invariance principle for the continuous local martingale, and, using this law, describes the oscillations of solutions for S.
给出连续局部鞅关于重对数律的不变原理,并得到随机微分方程的一个渐近定
4) local martingales
![点击朗读](/dictall/images/read.gif)
局部鞅
1.
This paper gives the two-parameter local martingales unedr new stopping context, and hence certain results are similar to the local martingales of one-parameter obtained.
给出了新的停止意义下的局部鞅,得到了类似于单指标局部鞅的一些结果,在G(F4)条件下,局部鞅的停止为局部鞅。
2.
This paper gives the characterization of martingales for generalized Brownian Sheer,two-parameter continous adapted processes(B2)2∈R2+ is generalized Brownian Sheet if (B2)2∈R2+ is two-parameter local martingales which is given by J.
在文献[1]的基础上给出了广义BrownianSheet鞅刻画:两参数连续适应过程(B2)z∈R2+为广义BrownianSheet的充要条件是(B2)z∈R2+为Fouque意义下的两参数局部鞅,且存在R2+上的L—S测度d,(d《λ,λ为R2+上的Lebesgue测度)使得(B2z-d(Z)z∈R2+为Fouque意义下的两参数局部鞅,其中以d(z)=d((0,z])。
5) set-valued submartingale
![点击朗读](/dictall/images/read.gif)
集值下鞅
1.
Theorem 2 gives the sufficient and necessary condition of continuous parameter set-valued submartingale existing Doob-Meyer decomposition.
定理 2给出了连续参数集值下鞅存在唯一的Doob Meyer分解的充要条件 。
6) set-valued supermartingale
![点击朗读](/dictall/images/read.gif)
集值上鞅
1.
The convergence with discrete parameter of set-valued supermartingale had been investigated by many scholars.
离散参数集值上鞅的收敛性已有诸多学者研究过。
2.
The properties of set-valued supermartingale and suport function are discussed,using suport function,we get Riesz decomposition theorem of set-valued supermartingale in general Banach space,these results extend and improve the earler results.
讨论了集值上鞅与支撑函数的一些性质,利用支撑函数研究了一般Banach空间上集值上鞅的Riesz分解定理,推广和改进了以往的结果。
补充资料:鞅鞅不乐
1.因不满意而很不快乐。鞅,通"怏"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条