1) Multivalued order supermartingale
集值序上鞅
2) set-valued supermartingale
集值上鞅
1.
The convergence with discrete parameter of set-valued supermartingale had been investigated by many scholars.
离散参数集值上鞅的收敛性已有诸多学者研究过。
2.
The properties of set-valued supermartingale and suport function are discussed,using suport function,we get Riesz decomposition theorem of set-valued supermartingale in general Banach space,these results extend and improve the earler results.
讨论了集值上鞅与支撑函数的一些性质,利用支撑函数研究了一般Banach空间上集值上鞅的Riesz分解定理,推广和改进了以往的结果。
3) set-valued inverse supermartingale
集值逆上鞅
1.
Firstly,some properties of random essential supremum are discussed,set-valued inverse superpramart approximation and set-valued inverse supermartingale convergence theorem in the sense of Kuratowski are provided,respectively.
讨论了随机集族本性上确界的性质,给出了集值逆Superpramart的逆上鞅逼近及集值逆上鞅在Kuratowski意义下的收敛定理。
2.
Some results are given for set-valued inverse supermartingale in the sense of Kuratowski-Mosco and weak limit.
给出了集值逆上鞅的一些结论,在此基础上研究了集值逆上鞅在Kuratowski-Mosco收敛意义下及弱收敛意义下的收敛性。
4) set-valued order submartingale
集值序下鞅
1.
Selection of set-valued order submartingale and its representative theorems;
集值序下鞅的选择与表示定理
2.
Riesz decomposition and convergence for set-valued order submartingale with continuous parameter;
连续参数集值序下鞅的Riesz分解及收敛性
3.
Doob stopping theorems for set-valued order submartingale;
集值序下鞅的Doob停止定理
5) non-convex set-valued supermartingale
非凸集值上鞅
6) set-valued submartingale
集值下鞅
1.
Theorem 2 gives the sufficient and necessary condition of continuous parameter set-valued submartingale existing Doob-Meyer decomposition.
定理 2给出了连续参数集值下鞅存在唯一的Doob Meyer分解的充要条件 。
补充资料:鞅鞅不乐
1.因不满意而很不快乐。鞅,通"怏"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条