说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 实二次代数整数
1)  real algebraic integer
实二次代数整数
2)  quadrack algebra
二次代数
3)  quadratic algebraic number
二次代数数
4)  quadratic imaginary simple algebraic integral domain
二次虚单纯代数整环
1.
In this paper,we extends the integral domain to the quadratic imaginary simple algebraic,integral domain,discusses the reductive factorization of which and the integral domain with the Euclid property,and obtains a part of integral domain which can be factorized uniquely in the quadratic imaginary simple algebraic integral domain.
该文把整数环扩充到二次虚单纯代数整环,讨论了二次虚单纯代数整环的可既约分解性,进一步探讨了具有Euclid性质的整环,从而得到了二次虚单纯代数整环中能够实现唯一分解的一部分整环。
5)  quadratic integer square
二次整数方
1.
This paper also gives the definition of quadratic integer squares alone with the product between them and replace of proving the existence of pandiagonal magic squares of orders mn by proving the existence of pandiagonal magic squares of orders m and n respectively.
本文给出了二次整数方及其乘积的定义 ,化mn阶全对角线幻方的存在性为m阶和n阶全对角线幻方的存在性 。
6)  Quadratic Lie algebra
二次李代数
补充资料:平面实代数曲线


平面实代数曲线
plane real algebraic curve

代数曲线L上是正则的(reg川ar).如果存在(曲线L上以及M上的)正则映射F:L一,M和G:M一,L,它们互为逆映射,则称曲线L和M是同构的(isomorphjc).此时环K(L)和K(M)同构.特别地,仿射等价的曲线是同构的. 更一般地,从曲线L到曲线M的有理映射(fa-tio耐mapPing)可用有理函数表示.它建立了曲线间除去有限多点外其他所有点问的一个对应,而且可如下定义.设.厂二0和g二0分别是L和M的定义方程,则有理映射F可由一对定义在L上且满足g(势,吵)二0的有理函数价和沙所定义.如果存在从L到M和从M到L的互逆有理映射,则称曲线L与M是双有理等价的(birati。蒯ly叫u」讼正nt).这样的有理映射称为双有理变换(bira如nal tmnsfon刀ation)或Cre仃IOna变换(Crernona trdnsfonl、比tion).平面上的所有Crenlolla变换可通过逐次执行标准二次孪攀(st anctard quadnltictonsl’orma咖)二‘一’1)王,y一1 Zy,以及射影变换来实现.双有理等价性比同构粗糙,但是从这个观点对平面实代数曲线作分类则更简单且易于观察. 有理变换的一个很简单的例子是射影变换(projec-tivet~formatlon).从一条不是直线的不可约曲线L到L的对偶(dUal)曲线L‘里的对偶映射(d比11 map-p哩)起着重要的作用,这个对偶映射由下式定义: 兰工 一万万平下百一, 了一x于午一y会乙 刁x护刀y 互 .、_刁y v二一.(2、 I一X一一V一 t)x口y其中f是定义L的多项式.从(1)和(2)中消去x和y得到的方程 夕(u,v)二0定义了L’从对偶映射与切线变换(tangent达It伽s-formation)间的关系,可以看出在某些情形里L‘可被表示为与L相切的直线族的包络. L’的次数称为曲线L的类(class)n’.对偶关系是互反的,即L‘’二L,它是射影几何里的对偶原理(d珑山ty pnncjPle)的一个反映. 由(l)定义的平面实代数曲线L的点x当在x处有gmdf“O时被称为奇点(sin即lar point).奇点的分析对于L的研究是十分必要的,可是奇点的分类迄今尚远未完成. 如果多项式厂在x点的直至r一l阶的导数都等于O,而x点的r阶导数异于零,则称x为厂重点(point of multiPlicity。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条