1) K-subdifferential
K-次微分
1.
The definitions of some new nonsmooth generalized convex functions were given in terms of concepts of local cone approximation,K-directional derivative and K-subdifferential,that is,K-(F,a,ρ,d)-convex,K-(F,a,ρ,d)-quasiconvex,weak K-(F,a,ρ,d)-quasiconvex,K-(F,a,ρ,d)-pseudoconvex,strict K-(F,a,ρ,d)-pseudo-convex,their generalizations were discussed.
利用局部渐近锥(localconeapproximation)、K-方向导数、K-次微分的概念,定义了几类更广泛的非光滑广义凸函数,即K-(F,a,ρ,d)-凸、K-(F,a,ρ,d)-拟凸、K-(F,a,ρ,d)-弱拟凸、K-(F,a,ρ,d)-伪凸、K-(F,a,ρ,d)-严格伪凸,讨论它们的广义性。
2) Differential graded k-algebra
微分分次k-代数
3) k th differential
k阶微分
4) graded k-functor
分次k-函子
1.
When F is a graded k-functor,obtains that (X#G)∝(F#r)(X∝F)r# G,for all r in N(G).
在定义C上k-函子F的基础上,证明了平凡扩张范畴C∝F仍为k上G-分次范畴;当F为X上分次k-函子时,给出了一族范畴同构,即r∈N(G),有(C#G)∝(F#r)(C∝F)r#G。
5) graded K-category
分次K-范畴
6) graded k-algebra
分次k-代数
补充资料:次微分
次微分
subdifferential
次微分阵由山场,图血l;cy6及一帅epe。”“幼] 定义在与空间Y对偶的空间X上的凸函数f:X卜R在点x。的次微分是Y中由下式定义的点集: 刁f(x‘、)={夕EY二f(x)一f(x。)) )
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条