1) fuzzy function approximation
模糊函数逼近
2) numerical approximations method
函数模型逼近
1.
In this paper,several representative model of numerical approximations method are analyzed and several instance are computed and compared.
分析函数模型逼近的几种代表性模型的建立,并通过算例进行比较分析,得出一些有益的结论。
3) function approximation model
函数逼近模型
1.
Single function approximation model can approximate nonlinear curves.
函数逼近问题一直是模式识别领域的热点,单一函数逼近模型已经能够有效地逼近非线性曲线,但无法实现对多条曲线的同时逼近。
5) Function approximation
函数逼近
1.
The function approximation ability comparison of two wavelet networks and their applications;
两种小波网络的函数逼近能力比较与应用
2.
Function approximation capabilities of intuitionistic fuzzy reasoning neural networks;
直觉模糊神经网络的函数逼近能力
3.
Function Approximation Study of General Fuzzy System;
模糊系统的函数逼近特性研究
6) approximation of function
函数逼近
1.
And as the approximation of function for example,approximating the emulation of the different BP neural Netwlrk with the figure of primary function,it compares the performance of different BP neural network,Advantages.
并以函数逼近为例,通过对不同的BP神经网络仿真与原函数图像的拟合,比较不同的BP神经网络的性能,验证新型BP网络的优势,得出如何根据对象选取神经网络的结论。
2.
This paper discusses differences and relations between Newton and Lagrange interpolation polynomial in approximation of function.
讨论了Newton及Lagrange插值多项式在函数逼近中的联系和区别。
3.
This paper discusses differences and relations between Taylor Polynomial and Newton interpolation polynomial in approximation of function.
讨论 Taylor多项式与 Newton插值多项式在函数逼近中的区别和联系。
补充资料:函数逼近,函数类的极值问题
函数逼近,函数类的极值问题
ions, extremal problems in function dasses approximation of ftinc-
】f,r,(r’)一f(r,(r‘’)}《M】r’一r“}“(r’,,“。I一1,!])的f任Cr!一1,l]组成的函数类,则对于n一1次代数多项式子空间贝了在!一1,l]上所作的最佳一致逼近,下列关系式成立: 悠二E‘MH。,”‘”)‘一粤,‘6) ,、_一二,二,,,,、~刀、M,二、。,,r,、忽”厂‘““‘M附rH“,贝:’‘一誉{’·‘万一‘’‘““‘,‘7, r=l,2,…,将这些结果与周期情形下的相应结果进行比较是有所裨益的.当,=1时,(6),(7)的右端分别等于M凡和M人r+1.如果放弃对最佳逼近多项式的要求,那么就可以获得较强的结果,这些结果实质上改善了在!一1,l]端点处的逼近并保持了整个区间上的最佳渐近特征.例如,对任何f6MH‘,存在代数多项式序列Pn以t)任灾矛,使得当n~的时,下列关系式在t6!一1,l]上一致成立:、f(!)一。。,‘)、·:{{;杯}“二‘一,!- =E(MHa,哭聋)。【(l一tZ)a·‘2+o(l)1.对M评百,(r=1,2,…)也有类似的结果(见【川).关于(最佳及插值型)样条逼近给定在区间上函数类的问题,若干精确及渐近精确的结果(主要是对于低阶样条)已公诸于世(见1151). 就(积分度量下的)单边逼近而言,关于上述函数类用多项式和样条进行最佳逼近的误差估计也已得到了一系列精确的结果(见【14]).在推导这些结果的过程中,实质上利用了最佳逼近在锥约束下的对偶关系. 对给定的函数类叨,寻求其(固定维数的)最佳逼近工具将导致确定所谓的宽度(widih)问题,亦即确定(参考(l),(3)) 心(,之,幻=运fE(叭,贝,)x, 贝即 d沁(叭,X)==运f者(叭,叽、),, 田阳(其中下确界取自X的所有N维子空间灾N(及其平移)),以及确定实现这些下确界的(最佳)极子空间问题.心与d万的上界可由E(叨,灾)x和g(叭,叭)x分别给出,对于具体的子空间贝,来说,E(绷,灾)x和扩(绷,哭N)x是已知的.宽度问题中的主要困难是获取下确界.在某些场合下,可借助于拓扑中的Borsuk对映定理丈见18』)而得到这些下确界.在用(。一1阶三角多项式)子空间,荔一,或(关于结点人司。亏数为1的。阶样条)子空间s皿解决函数类M吼及周期函数类wrH“的最佳逼近问题时,已知的上确界E(叭,巩、)x几乎在所有的情况下同时也就是这些函数类的心值.此外,对周期函数类还有姚。一1=姚。.特别有(见[7],【8],【1 51,【16」)dZ,l(附妥,C)=dZ。(W蕊,C)二dZ。一(W下.L一)= =dZ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条