说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 模糊逼近泛函微分方程
1)  Functional differential equations in terms of fuzzyproximation
模糊逼近泛函微分方程
2)  fuzzy approaching functional mapping
模糊泛函微分方程
3)  functional differential equation model
泛函微分方程模型
1.
In this paper, a functional differential equation model of biological population is studied.
研究了一个有关生物种群的非线性泛函微分方程模型整体解的存在性和唯一性问题。
4)  universal fuzzy approximator
泛模糊逼近器
1.
A rule-union operator is defined,and 31 rule-union operators are given;It is proved that a triangular-norm is a rule-union operator;The sufficient necessary conditions are given for a fuzzy controller to be a universal fuzzy approximator.
通过引进规则并算子的概念,本文给出31个规则并算子;证明了三角模是规则并算子;给出由规则并算子构造的控制器是泛模糊逼近器的充要条件。
5)  Functional differential and functional equations
泛函微分与泛函方程
1.
Functional differential and functional equations (FDFEs) are a class of hybrid systems that are more complex than that of FDEs.
泛函微分与泛函方程是较泛函微分方程更为复杂的一类系统,它是由泛函微分方程与泛函方程耦合而成的混合系统,特别是中立型泛函微分方程可视为其特例。
6)  functional differential equation
泛函微分方程
1.
Forced oscillation of a class of high order functional differential equations;
一类高阶泛函微分方程的强迫振动性
2.
Existence of analytic solutions of a second-iterative functional differential equation;
一类二阶迭代泛函微分方程解析解的存在性
3.
Existence of periodic solution for certain functional differential equation;
一类泛函微分方程的周期解的存在性
补充资料:微分方程的差分方程逼近


微分方程的差分方程逼近
approximation of a differential equation by difference equations

  微分方程的差分方程通近【app拟。mati.ofa山价犯n-ti习闪姗柱.by山血魂.理equa西姗;即即肠。砚田朋.朋巾卜碑四.别吸.。印冲.旧e朋,pa3I.ecTll目M] 微分方程用关于未知函数在某种网格上的值的代数方程组的逼近,当网格的参数(网络、步长)趋于零时可使得逼近更加精确. 设L(Lu可)是某个微分算子,几(L声。=几,。。任叭,人“凡)是某个有限差分算子(见徽分算子的差分算子通近(aPProximation of a dilferential operator by dif-feren沈。perators”.如果算子L、关于解u逼近算子L,其阶为p,即如果 }}Lh[u]*I}汽=o(hp),那么有限差分式L声、二0(o任凡)称为关于解“对微分方程Lu=O的P阶逼近. 构造有限差分方程L声*=0关于解u逼近微分方程Lu=0的最简单例子是将Lu的表达式中每个导数用相应的有限差分来代替. 例如,方程 _子“.,、血._,_八_一n Lu三书舟+P(x)于+q(x)u=U ~“一dxZr‘~产dxl‘’可用有限差分方程 L‘“‘三生理二丛吐丛二+ h‘ U~丰I一U,_I_ +尸(x们厂竺二兹巴几十,(x功)u朋一o作二阶精度逼近,其中网格几。和几;由点x.“。h组成(m是一整数),“.是函数u*在点x.的值.又,方程 au aZu L“三共牛一斗冬二0, --一ar ax,可用关于光滑解的两种不同的差分近似来逼近: _.月+1_”月气.月上.” 一门、“nt4用“用十l‘“阴l“用一I八 于九‘(撇式格式(exPlie,}seheme))和! “几’l一嗽试,‘l}一翔二,曰衅,‘从 拭’价二一一-一—一了一--一一几,(隐式格式(一mf)liczt scheme)),其中网格D*。和D*:由点(x。,甲=(川入,似)组成,:二rhZ,r二常数,巾和n是整数,。二是函数翻、在网格点(x,,t。)的值.存在这样的有限差分算子L,它对微分算子L的逼近,仅关于方程L。一0的解。特别好,而关于其他函数则差一些.例如,算一子L*L*U。三兴,·卜·夸卫一尹{刁内队引〔其中汀二·。州一随甲‘气))关f任意的光滑函数。(*)是算 广L- d仪 L“一…一甲〔戈,“)Z(工) 办的一阶逼近(_关于八)、而关于方程大u=O的解却是二阶逼近(假定函数:,充分光滑)在利用有限差分方程与。。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条