1) approximation of function
[数]函数逼近
2) Function approximation
函数逼近
1.
The function approximation ability comparison of two wavelet networks and their applications;
两种小波网络的函数逼近能力比较与应用
2.
Function approximation capabilities of intuitionistic fuzzy reasoning neural networks;
直觉模糊神经网络的函数逼近能力
3.
Function Approximation Study of General Fuzzy System;
模糊系统的函数逼近特性研究
3) approximation of function
函数逼近
1.
And as the approximation of function for example,approximating the emulation of the different BP neural Netwlrk with the figure of primary function,it compares the performance of different BP neural network,Advantages.
并以函数逼近为例,通过对不同的BP神经网络仿真与原函数图像的拟合,比较不同的BP神经网络的性能,验证新型BP网络的优势,得出如何根据对象选取神经网络的结论。
2.
This paper discusses differences and relations between Newton and Lagrange interpolation polynomial in approximation of function.
讨论了Newton及Lagrange插值多项式在函数逼近中的联系和区别。
3.
This paper discusses differences and relations between Taylor Polynomial and Newton interpolation polynomial in approximation of function.
讨论 Taylor多项式与 Newton插值多项式在函数逼近中的区别和联系。
4) approximation function
逼近函数
1.
Firstly,the best uniform approximation function is constructed with Chebyshev interpolation method,then the function is analyzed by partial orthogonal decomposition to obtain related eignvalue and eignvalue vector.
首先,利用Chebyshev插值法建立非平稳信号的最佳一致逼近函数;然后,通过对该函数进行偏正交分解获取对应的特征值及特征向量。
2.
A new method of analytic extension for the approximation function of firing tables out of the firing table s valid firing area was put forward.
在有效射界外,为火炮射表的逼近函数构造了一个解析延拓函数,它能为有效射程之外平稳光滑地引导火炮提供策略,而且可保证求解的第一个命中点在有效射界的边界上,为目标快速射击争取了最大的射击机会。
3.
For nonlinear and nonstationary signal,the paper builds the best uniform approximation function with Chebyshev s interposing method,then the function is analyzed by orthogonal function to(obtain) relating eigenvalue and eigen vector.
利用Chebyshev插值法,建立非平稳信号的最佳一致逼近函数,通过对该函数进行偏正交分解获取对应的特征值及特征向量,该方法运用在滚动轴承故障特征提取应用中,取得了良好的效果。
5) functional approximation
函数逼近
1.
Functional approximation development—neural networks;
函数逼近的发展——神经网络
6) function approaching
函数逼近
1.
The result shows better by the example of function approaching.
将二元蚁群算法和神经网络混合,可兼有神经网络广泛映射能力和二元蚁群算法快速全局收敛能力,通过在函数逼近实验表明取得了较好的结果。
补充资料:函数逼近,函数类的极值问题
函数逼近,函数类的极值问题
ions, extremal problems in function dasses approximation of ftinc-
】f,r,(r’)一f(r,(r‘’)}《M】r’一r“}“(r’,,“。I一1,!])的f任Cr!一1,l]组成的函数类,则对于n一1次代数多项式子空间贝了在!一1,l]上所作的最佳一致逼近,下列关系式成立: 悠二E‘MH。,”‘”)‘一粤,‘6) ,、_一二,二,,,,、~刀、M,二、。,,r,、忽”厂‘““‘M附rH“,贝:’‘一誉{’·‘万一‘’‘““‘,‘7, r=l,2,…,将这些结果与周期情形下的相应结果进行比较是有所裨益的.当,=1时,(6),(7)的右端分别等于M凡和M人r+1.如果放弃对最佳逼近多项式的要求,那么就可以获得较强的结果,这些结果实质上改善了在!一1,l]端点处的逼近并保持了整个区间上的最佳渐近特征.例如,对任何f6MH‘,存在代数多项式序列Pn以t)任灾矛,使得当n~的时,下列关系式在t6!一1,l]上一致成立:、f(!)一。。,‘)、·:{{;杯}“二‘一,!- =E(MHa,哭聋)。【(l一tZ)a·‘2+o(l)1.对M评百,(r=1,2,…)也有类似的结果(见【川).关于(最佳及插值型)样条逼近给定在区间上函数类的问题,若干精确及渐近精确的结果(主要是对于低阶样条)已公诸于世(见1151). 就(积分度量下的)单边逼近而言,关于上述函数类用多项式和样条进行最佳逼近的误差估计也已得到了一系列精确的结果(见【14]).在推导这些结果的过程中,实质上利用了最佳逼近在锥约束下的对偶关系. 对给定的函数类叨,寻求其(固定维数的)最佳逼近工具将导致确定所谓的宽度(widih)问题,亦即确定(参考(l),(3)) 心(,之,幻=运fE(叭,贝,)x, 贝即 d沁(叭,X)==运f者(叭,叽、),, 田阳(其中下确界取自X的所有N维子空间灾N(及其平移)),以及确定实现这些下确界的(最佳)极子空间问题.心与d万的上界可由E(叨,灾)x和g(叭,叭)x分别给出,对于具体的子空间贝,来说,E(绷,灾)x和扩(绷,哭N)x是已知的.宽度问题中的主要困难是获取下确界.在某些场合下,可借助于拓扑中的Borsuk对映定理丈见18』)而得到这些下确界.在用(。一1阶三角多项式)子空间,荔一,或(关于结点人司。亏数为1的。阶样条)子空间s皿解决函数类M吼及周期函数类wrH“的最佳逼近问题时,已知的上确界E(叭,巩、)x几乎在所有的情况下同时也就是这些函数类的心值.此外,对周期函数类还有姚。一1=姚。.特别有(见[7],【8],【1 51,【16」)dZ,l(附妥,C)=dZ。(W蕊,C)二dZ。一(W下.L一)= =dZ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条