说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 向量值映射
1)  vector-valued map
向量值映射
1.
D-η-properly prequasiinvex, and D-η-properly semistrictly prequasiinvex for vector-valued maps are introduced, under the lower D-Semi-continuous condition and the upper D- Semi-continuous condition, respectively.
引入了向量值映射的D-η- 预不变真拟凸等概念,在下D-半连续和上D-半连续条件下分别得到了向量值映射的D-η- 预不变真拟凸的等价命题,并讨论了向量值映射的D-η- 预不变真拟凸、D-η- 严格预不变真拟凸、D-η- 半严格预不变真拟凸的关系,证明了在一定条件下,向量优化问题(VP)的局部弱有效解一定是(VP)的全局弱有效解,这些结果推广了前人所得的相应结果。
2)  vector-valued mapping
向量映射
1.
By introducing the section lemma and the concept of quasiconvexity for vector-valued mappings on G-convex space, we establish some vector minimax inequalities that generalizes some main results of G.
通过在G-凸空间上引进向量映射的拟凸性概念及截口引理,得到一些向量极小极大定理,推广了陈光亚、Li和Wang等的主要结果。
2.
The concepts of cone-convexity and cone-proper quasiconvexity for vector-valued mappings on G-Convex space are introduced.
在G凸空间上引进向量映射的锥凸与锥真拟凸概念,并得到一个向量极小极大定理。
3.
In this paper,some qualities of the generalized quasiconvexity for vector-valued mappings are studied,a type of minimax inequalities on ordered topological vector space is discussed,and some main results of related thesis are improved and generalized.
通过研究广义拟凸的向量映射的一些性质,讨论了向量极小极大不等式,改进和推广了相关文献中的主要结果。
3)  mapping vector
映射向量
1.
Principal component analysis(PCA) of fault isolation based on fault mapping vector and structured residual;
基于故障映射向量和结构化残差的主元分析(PCA)故障隔离
4)  vector optimization problems of set valued mapping
集值映射向量优化问题
1.
In this paper,we conside the properties of weak effective solution of vector optimization problems of set valued mapping.
研究了集值映射向量优化问题弱有效解的一些性质,引进了集值映射向量优化问题弱有效解的定义,并证明了集值映射向量优化问题弱有效解的几个连续性质以及具有某些性质的集值映射组成的空间是完备的。
5)  scalar valued map
纯量值映射
6)  scalar-valued mapping
标量值映射
补充资料:多值映射
      从集X到集Y的多值映射是一个对应规律F,按照这个规律,对于X的每个元素x,都能相应地得到Y的一个非空子集F(x),称为x对于F的像。对于任何嶅X,集称为集对于F的像;按照F(X)嶅Y或F(X)=Y而说F把X映入或映成Y。特别是,如果每个元素的像集都只含有一个元素,那就是一个单值映射。空间与(单值)映射是拓扑学中两个最原始的基本概念,拓扑学的基本问题──空间的拓扑分类问题,是基于同胚的概念提出来的。而同胚是单值映射,所以单值映射在拓扑学中的地位,显然远比多值映射的地位重要得多。实际上,提出多值映射的概念,出发点不是单纯为了推广,而是着眼于它对其他数学领域的应用。多值映射总是可以化成单值映射来考虑的,即是,如果用2Y表示Y的所有非空子集的集合,那么从X到Y的多值映射F可以视为从X 到2Y的单值映射,记为F :X→2Y。因此,可以像单值映射一样,对于任何∈2Y定义它的逆像为,所以对于任何嶅2Y,有。设X和Y 都是T1拓扑空间,为了定义F:X→2Y 的连续性,2Y 中的拓扑结构是借助于Y的拓扑结构 τ(Y)给出的,通常有下面三种:对于任何U 嶅Y,定义,于是以为子基产生的拓扑结构称为维托利斯拓扑,而以|或为子基产生的拓扑结构则分别称为上半连续拓扑和下半连续拓扑。在这些拓扑结构下,F:X→2Y(作为单值映射)的连续性分别称为连续、上半连续或下半连续,即是,F:X→2Y称为上半连续的,如果;F称为下半连续的,如果;F称为连续的,如果它既是上半连续又是下半连续的;这里F-1>+称为集U的上逆像,而F-1>-称为集U的下逆像。子集空间2Y的拓扑结构对于由此展开的多值映射理论至关紧要,因此,对于子集空间拓扑结构的研究已经成为点集拓扑学中一个有趣的课题。此外,对于多值映射F:X→2Y还可以提出一个连续选择的问题:在什么条件下存在单值连续映射??:X→Y,使得?如果F具有连续选择,那么与F 有关的应用问题几乎都可以归结为单值映射的相应问题。
  
  多值映射的一般理论自然是单值映射相应理论的推广,但前者显然不如后者那么丰富多彩。多值映射理论的重要性在于它对其他数学分支的应用,特别值得一提的,是多值映射的不动点理论对博弈论的完美应用。x∈X称为F:X→2X的不动点,如果x∈F(x)。角谷静夫于1941年首先把关于单值映射的布劳威尔不动点定理推广到多值映射,下面是一个等价形式:
  
  角谷不动点定理 假设K嶅Rn是非空有界闭凸集,F:K→2K是上半连续多值映射,使得对每个p∈K,F(p)都是K的非空闭凸集,于是F有不动点。
  
  命,于是K=Δ×Δ嶅R2n是非空有界闭凸集。考虑双线性函数
  ‖αij‖为实矩阵。对于任何(x,y)∈K,命可以证明,F(x,y)嶅K是非空闭凸集,F:K→2K上半连续,所以据角谷定理知,存在()∈K,使()∈F(),即从而由于相反的不等式是自然成立的,这就证明了矩阵博弈的基本定理:存在∈Δ,使得现在角谷定理已经得到很大的推广,在博弈论、泛函分析等分支都有广泛而重要的应用。
  
  

参考书目
   E.Michael,Topologies on Spaces of Subsets,Tran. Amer.Math. Soc., Vol.71, pp.152~182,1951.
   E.Michael, A Survey of Continuous Selections,Lecture Notes in Math.,Vol.171, Springer-Verlag, Berlin, 1970.
   C.Berge,Topological Spaces, Oliver and Boyd, Edinbergh and London, 1963.
   C. Berge,Théorie Générale des Jeux ╜ n Personnes,Gauthier-Villars, Paris, 1957.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条