1) single-value mapping
单值映射
1.
Kohil ̄[1],In thispaper,the concept of single-value mapping was extended to set-value mapping and someproperties of S-continuity were discussed.
Kohil给出了单值映射的S连续定义的概念。
2) φ-monotone multivalued mapping
φ单调集值映射
3) nonnomotone multivalued mapping
非单调多值映射
4) discontinuous and nononotone nonlinear multivalued mapping
不连续非单调多值映射
5) mixed monotone multifunction
混合单调集值映射
1.
The existence of the couple fixed points of a discontinuous mixed monotone multifunction is discussed,and the form of the couple fixed point is also given.
在赋范线性空间中引入单调弱闭集等概念 ,讨论了不具有任意连续性的混合单调集值映射耦合不动点的存在性问题 ,并且给出了耦合不动点的求解步骤以及它的构造形式。
2.
This paper introduces a class of wider mixed monotone multifunction, anddiscusses some existence theorems of the coupled quasifixed points for these mappings.
本文引入一类较广的混合单调集值映射,并讨论它们的耦合拟不动点的存在性,推广并统一了〔1~4〕中的某些概念和结果,得出一些新结论。
6) Generalized InvariantMonotonicity
广义不变单调集值映射
补充资料:多值映射
从集X到集Y的多值映射是一个对应规律F,按照这个规律,对于X的每个元素x,都能相应地得到Y的一个非空子集F(x),称为x对于F的像。对于任何嶅X,集称为集对于F的像;按照F(X)嶅Y或F(X)=Y而说F把X映入或映成Y。特别是,如果每个元素的像集都只含有一个元素,那就是一个单值映射。空间与(单值)映射是拓扑学中两个最原始的基本概念,拓扑学的基本问题──空间的拓扑分类问题,是基于同胚的概念提出来的。而同胚是单值映射,所以单值映射在拓扑学中的地位,显然远比多值映射的地位重要得多。实际上,提出多值映射的概念,出发点不是单纯为了推广,而是着眼于它对其他数学领域的应用。多值映射总是可以化成单值映射来考虑的,即是,如果用2Y表示Y的所有非空子集的集合,那么从X到Y的多值映射F可以视为从X 到2Y的单值映射,记为F :X→2Y。因此,可以像单值映射一样,对于任何∈2Y定义它的逆像为,所以对于任何嶅2Y,有。设X和Y 都是T1拓扑空间,为了定义F:X→2Y 的连续性,2Y 中的拓扑结构是借助于Y的拓扑结构 τ(Y)给出的,通常有下面三种:对于任何U 嶅Y,定义,于是以为子基产生的拓扑结构称为维托利斯拓扑,而以|或为子基产生的拓扑结构则分别称为上半连续拓扑和下半连续拓扑。在这些拓扑结构下,F:X→2Y(作为单值映射)的连续性分别称为连续、上半连续或下半连续,即是,F:X→2Y称为上半连续的,如果;F称为下半连续的,如果;F称为连续的,如果它既是上半连续又是下半连续的;这里F-1>+称为集U的上逆像,而F-1>-称为集U的下逆像。子集空间2Y的拓扑结构对于由此展开的多值映射理论至关紧要,因此,对于子集空间拓扑结构的研究已经成为点集拓扑学中一个有趣的课题。此外,对于多值映射F:X→2Y还可以提出一个连续选择的问题:在什么条件下存在单值连续映射??:X→Y,使得?如果F具有连续选择,那么与F 有关的应用问题几乎都可以归结为单值映射的相应问题。
多值映射的一般理论自然是单值映射相应理论的推广,但前者显然不如后者那么丰富多彩。多值映射理论的重要性在于它对其他数学分支的应用,特别值得一提的,是多值映射的不动点理论对博弈论的完美应用。x∈X称为F:X→2X的不动点,如果x∈F(x)。角谷静夫于1941年首先把关于单值映射的布劳威尔不动点定理推广到多值映射,下面是一个等价形式:
角谷不动点定理 假设K嶅Rn是非空有界闭凸集,F:K→2K是上半连续多值映射,使得对每个p∈K,F(p)都是K的非空闭凸集,于是F有不动点。
命,于是K=Δ×Δ嶅R2n是非空有界闭凸集。考虑双线性函数
‖αij‖为实矩阵。对于任何(x,y)∈K,命可以证明,F(x,y)嶅K是非空闭凸集,F:K→2K上半连续,所以据角谷定理知,存在()∈K,使()∈F(),即从而由于相反的不等式是自然成立的,这就证明了矩阵博弈的基本定理:存在∈Δ,使得现在角谷定理已经得到很大的推广,在博弈论、泛函分析等分支都有广泛而重要的应用。
参考书目
E.Michael,Topologies on Spaces of Subsets,Tran. Amer.Math. Soc., Vol.71, pp.152~182,1951.
E.Michael, A Survey of Continuous Selections,Lecture Notes in Math.,Vol.171, Springer-Verlag, Berlin, 1970.
C.Berge,Topological Spaces, Oliver and Boyd, Edinbergh and London, 1963.
C. Berge,Théorie Générale des Jeux ╜ n Personnes,Gauthier-Villars, Paris, 1957.
多值映射的一般理论自然是单值映射相应理论的推广,但前者显然不如后者那么丰富多彩。多值映射理论的重要性在于它对其他数学分支的应用,特别值得一提的,是多值映射的不动点理论对博弈论的完美应用。x∈X称为F:X→2X的不动点,如果x∈F(x)。角谷静夫于1941年首先把关于单值映射的布劳威尔不动点定理推广到多值映射,下面是一个等价形式:
角谷不动点定理 假设K嶅Rn是非空有界闭凸集,F:K→2K是上半连续多值映射,使得对每个p∈K,F(p)都是K的非空闭凸集,于是F有不动点。
命,于是K=Δ×Δ嶅R2n是非空有界闭凸集。考虑双线性函数
‖αij‖为实矩阵。对于任何(x,y)∈K,命可以证明,F(x,y)嶅K是非空闭凸集,F:K→2K上半连续,所以据角谷定理知,存在()∈K,使()∈F(),即从而由于相反的不等式是自然成立的,这就证明了矩阵博弈的基本定理:存在∈Δ,使得现在角谷定理已经得到很大的推广,在博弈论、泛函分析等分支都有广泛而重要的应用。
参考书目
E.Michael,Topologies on Spaces of Subsets,Tran. Amer.Math. Soc., Vol.71, pp.152~182,1951.
E.Michael, A Survey of Continuous Selections,Lecture Notes in Math.,Vol.171, Springer-Verlag, Berlin, 1970.
C.Berge,Topological Spaces, Oliver and Boyd, Edinbergh and London, 1963.
C. Berge,Théorie Générale des Jeux ╜ n Personnes,Gauthier-Villars, Paris, 1957.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条