1) complex mode shape derivatives
复振型导数
1.
Structural dynamical behavior becomes complicated when various dampings act on a real structural system simultaneously,and difficulty arises in calculating complex mode shape derivatives.
采用模态加速和移频的思想发展了一种基于模态叠加的复振型导数计算方法。
2) complex mode superposition method
复数振型叠加法
1.
The proposed approach can offer an exact solution for dynamic response of base-isolated structure,through using the complex mode superposition method.
利用复数振型叠加法,这种求解方法能够得出结构动力响应的精确解。
3) dominant mode
主导振型
1.
The dominant modes of Beijing National Stadium (abbr.
以国家体育场大跨屋盖结构风振响应的计算分析为研究对象,提出了在时域内计算振型能量参与系数的方法,并采用振型能量累积参与系数选择主导振型;提出了利用主导振型响应的协方差计算结构节点的方差响应以及峰值因子的方法。
2.
The mode energy participation factor and the cumulated factor are presented in order to identify the dominant modes of fluctuating wind-induced response for a large-span roof.
为了选取大跨屋盖结构脉动风振响应的主导振型,提出了振型能量参与系数及其累积参与系数的计算方法。
4) flutter derivatives
颤振导数
1.
Identification of flutter derivatives of full-bridge aeroelastic model;
全桥气弹模型颤振导数识别
2.
Simulations for identification of flutter derivatives of bridge section using the coupled-forced-vibration method;
桥梁颤振导数的耦合强迫振动仿真识别
3.
The identification of flutter derivatives for 2-DOF and 3-DOF bridge sectional model applying the forced vibration method;
两自由度及三自由度桥梁断面颤振导数的强迫振动识别法
5) flutter derivative
颤振导数
1.
Based on static dynamic force test of segmental models of Chongqing Chaotianmen Bridge,dynamic force test,the varying law of the coefficients of three-dimensional static component forces with the changing of attack angles and properties of main girder and main arch,and flutter property of main girder are obtained,and eight flutter derivatives of main girder are recognized.
通过重庆朝天门长江大桥的节段模型静力试验和动力试验,获得了主梁及主拱的静力三分力系数随攻角的变化规律、主梁的颤振特性,识别了主梁的8个颤振导数,并对试验获得的结果进行了详细分析;对该桥的主梁和主拱结构的抗风性能进行了评价。
2.
It is found that the flutter derivatives are dependent from the amplitude and frequency in the practical range of wind speed.
利用我们开发的国内第一个强迫振动法试验方法 ,研究了三种不同断面的桥梁颤振自激力特性和Scanlan提出的颤振导数理论的若干假定。
3.
Model stiffness and support location effect on flutter derivatives is studied in bridge deck section dynamical test.
通过试验研究了桥梁节段模型动力试验中模型本身的刚度和支撑位置对颤振导数测量结果的影响 。
补充资料:点振子振动和点电极振子振动
分子式:
CAS号:
性质:又称点振子振动和点电极振子振动。振动能量绝大部分集中在点电极范围内,形成“能量封闭”的振动模式。振子电极面远小于压电陶瓷片的总面积,且与厚度有适宜的匹配关系。在交变电场作用下,沿厚度方向产生振动,其振幅随着至电极中心距离的增加,呈指数式衰减。谐振频率与压电陶瓷片的厚度有关。为提高频率通常将压电陶瓷片磨得很薄,有时考虑到压电陶瓷自身强度太低,可用特制的陶瓷片作垫片来防止压电陶瓷片损坏。常用于高频场合。
CAS号:
性质:又称点振子振动和点电极振子振动。振动能量绝大部分集中在点电极范围内,形成“能量封闭”的振动模式。振子电极面远小于压电陶瓷片的总面积,且与厚度有适宜的匹配关系。在交变电场作用下,沿厚度方向产生振动,其振幅随着至电极中心距离的增加,呈指数式衰减。谐振频率与压电陶瓷片的厚度有关。为提高频率通常将压电陶瓷片磨得很薄,有时考虑到压电陶瓷自身强度太低,可用特制的陶瓷片作垫片来防止压电陶瓷片损坏。常用于高频场合。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条