2) complex mode superposition method
复数振型叠加法
1.
The proposed approach can offer an exact solution for dynamic response of base-isolated structure,through using the complex mode superposition method.
利用复数振型叠加法,这种求解方法能够得出结构动力响应的精确解。
3) mode superposition
振型叠加
1.
The mode superposition method is used in the dynamic calculation.
在论证向家坝升船机抗震设防标准的基础上,分别用《水工建筑物抗震设计规范》的标准谱、柯依那(Koyna)地震波和帕柯以玛(Pacoima)地震波计算反应谱对向家坝一级全平衡重垂直升船机塔楼结构进行了振型叠加的动力反应分析和相应的静力计算。
2.
In this paper, the internal forces in the composite space grids were calculated by using the mode superposition response spectrum method and the pattern of the internal forces in those structures under vertical earthquake, the problem of truncated modes and the feature about the distribution of the vertical seismic force coefficient were studied.
采用振型叠加反应谱法计算了竖向地震作用下组合网架的竖向地震内力,研究了该类结构的竖向地震内力分布规律、振型截断问题及竖向地震内力系数的分布规
5) mode superposition method
振型叠加法
1.
The proposed approach can offer an exact solution for dynamic response of base-isolated structure by means of the mode superposition method in each elastic and plastic phase, between which the transitional time must be obtained and employed.
在弹性和塑性的每一个阶段分别利用振型叠加法,并通过准确地求出隔震层弹塑性转换时刻,这种求解方法能够得出结构动力响应的精确解。
2.
This paper analyzes the forced vibration response of transmission system in 200km/h AC electric locomotive during its starting period, establishes the calculating model of the driving system by using mode superposition method, calculates the forced torsional vibration response of transmission system and the dynamic load magnification factor; and analyzes the influence of excitation functi.
随着机车速度的提高,对机车传动系统的动力性能要求越来越高,对200km/h交流电力机车传动系统在启动过程中的强迫动力响应进行了分析,建立了驱动装置的计算模型,通过振型叠加法,得到传动系统的强迫扭转动力响应。
3.
Therefore the vibration equation of the non-proportional damping of the isolated system is decoupled,and the responses of structure under earthquake excitation can be solved by the mode superposition method.
将该串联隔震体系的非比例阻尼分解为比例阻尼部分和非比例阻尼部分,应用Hamilton原理推导出非比例阻尼部分等效振型阻尼比,实现串联电气设备支架隔震体系振动方程的解耦,然后通过振型叠加法求得结构的地震响应。
6) mode superposition
振型叠加法
1.
Also,a method that combines the Fourier transform and mode superposition to solve the vibration equations is presented.
根据凸轮机构弹性动力学研究的一般步骤,介绍了凸轮机构弹性动力学研究中所用的线性,非线性离散数学模型和连续体数学模型,以及用傅立叶变换和振型叠加法解动力方程的方法。
补充资料:点振子振动和点电极振子振动
分子式:
CAS号:
性质:又称点振子振动和点电极振子振动。振动能量绝大部分集中在点电极范围内,形成“能量封闭”的振动模式。振子电极面远小于压电陶瓷片的总面积,且与厚度有适宜的匹配关系。在交变电场作用下,沿厚度方向产生振动,其振幅随着至电极中心距离的增加,呈指数式衰减。谐振频率与压电陶瓷片的厚度有关。为提高频率通常将压电陶瓷片磨得很薄,有时考虑到压电陶瓷自身强度太低,可用特制的陶瓷片作垫片来防止压电陶瓷片损坏。常用于高频场合。
CAS号:
性质:又称点振子振动和点电极振子振动。振动能量绝大部分集中在点电极范围内,形成“能量封闭”的振动模式。振子电极面远小于压电陶瓷片的总面积,且与厚度有适宜的匹配关系。在交变电场作用下,沿厚度方向产生振动,其振幅随着至电极中心距离的增加,呈指数式衰减。谐振频率与压电陶瓷片的厚度有关。为提高频率通常将压电陶瓷片磨得很薄,有时考虑到压电陶瓷自身强度太低,可用特制的陶瓷片作垫片来防止压电陶瓷片损坏。常用于高频场合。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条