1) meta-generalized semi-positive definite matrix
次广义半正定矩阵
2) generalized positive semidefinite matrix
广义半正定矩阵
1.
In this paper we generalize and improve Oppenhein s inequality for generalized positive semidefinite matrix.
在广义半正定矩阵上推广、改进了Oppenheim不等式。
3) generalized semi-positive definite matrix
广义半正定矩阵
1.
Meta-generalized semi-positive definite matrix is introduced.
引进了次广义半正定矩阵的概念,研究了它的基本性质及等价命题,建立了Schur乘积定理,Open-heim不等式,Minkowski不等式及一些相应的结果。
4) extended sub-positive definite matrix
广义次正定矩阵
1.
The property of extended sub-positive definite matrix is studied further by means of the method of matrix analysis to obtain the lower estimated Oppenheim inequality of Hadamard multiplication determinant(belonging) to two extended sub-positive definite matrices under more general conditions and improve the past(results) in the adaptation range and estimated exactness.
用矩阵分析的方法,通过对广义次正定矩阵性质的进一步研究,得到了更一般条件下的两个广义次正定矩阵的Hadamard乘积的行列式下界估计的Oppenheim不等式,在适用范围和估计精度上都改进了已有的相应结果。
5) sub-generalized positive definite matrix
次广义正定矩阵
1.
In this paper is presented the definition of the sub-generalized positive definite matrix, and the inverse problem of matrix equation AX=B on the sub-generalized positive definite matrix is studied.
给出了次广义正定矩阵的定义 ,研究了矩阵方程AX =B在次广义正定矩阵类上的反问题 。
6) general semipositive subdefinite matrix
广义亚半正定矩阵
补充资料:正定矩阵
设m是n阶实系数对称矩阵, 如果对任何非零向量
x=(x_1,...x_n) 都有 xmx^t>0,就称m正定。
正定矩阵在相似变换下可化为标准型, 即单位矩阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条