说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 对称凸函数
1)  symmetric convex function
对称凸函数
2)  symmetric arcwise-connected convex function
对称弧式连通凸函数
3)  symmetric function
对称函数
1.
Synthesis of symmetric functions based on RM type universal logic module ULM3;
基于RM型通用门ULM3的对称函数综合
2.
New method of detecting symmetry of CRM type symmetric function in OR-coincidence algebraic system based on tabular method;
基于表格法的CRM型对称函数检测
3.
Denotation and application for d_j-Map of symmetric function.;
对称函数的d_j图表示及其应用
4)  symmetric functions
对称函数
1.
This paper analyses the characteristics of the symmetric functions in the field GF (2~m),derives the relations of a class of usual determinants and the Vandermonde determi-nants.
分析了GF(2~m)上对称函数的特点,并且导出了一类常用的行列式与范德蒙德行列式的关系式,对于研究编码理论有一定的参考意义。
2.
In this paper,the author gives an explicit LU factorization and 1-banded factorization of the generalized Vandermonde matrix by using symmetric functions.
主要讨论如何利用对称函数构造证明文献[1]给出的广义范德蒙矩阵显式LU分解定理。
3.
An explicit LU factorization and 1-banded factorization of the generalized Vandermonde matrix are given by using symmetric functions.
利用对称函数给出了广义Vandermonde矩阵的显示LU分解和带宽为1的分解,从而可将广义Vandermonde矩阵表示为n个带宽为1的下三角矩阵和n个带宽为1的上三角矩阵的乘积。
5)  logarithmic convex function
对数凸函数
1.
Jensen type and Hadamard type inequalities of logarithmic convex function;
对数凸函数的Jensen型和Hadamard型不等式
2.
this article leads to another property of logarithmic convex function, by using of which asort of inequality is deduced.
本文导出了对数凸函数的又一性质,并利用该性质很方便地推导了一类不等式。
6)  unsymmetrical function
非对称函数
1.
The transverse distributions of the entry and exit thickness are simulated with the unsymmetrical function.
板形理论中条元法的计算精度在很大程度上依赖于金属出口横向位移函数的初值,在非对称情况下采用以往研究中使用对称情况下的初值会有一定误差,为此以非对称函数拟合带材入、出口处横向厚度分布,同时引入跑偏概念,利用最小能量原理,由欧拉微分方程求得非对称情况下出口处金属横向位移函数,并计算了前张应力的横向分布,计算结果符合试验规律。
2.
The transverse distribution of the entry and exit thickness is simulated with the unsymmetrical function.
以非对称函数拟合带材入、出口处横向厚度分布,引入跑偏的概念,从而推导出非对称情况下出口处金属横向位移函数,并得到了前张应力横向分布。
补充资料:凸函数
Image:11559688111252300.jpg
凸函数

凸函数是一个定义在某个向量空间凸子集c(区间)上的实值函数f

设f为定义在区间i上的函数,若对i上的任意两点x1,x2和任意的实数λ∈(0,1),总有

f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),

则f称为i上的凸函数.

判定方法可利用定义法、已知结论法以及函数的二阶导数

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条