说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义势
1)  generalized potential
广义势
1.
This paper infers the dynamical equation of relative motion by introducing the concept of generalized potential;and illustrates its application with examples.
引入惯性力广义势的概念 ,推出非惯性系中的拉格朗日方程 ,并举例说明了其应用 。
2.
The generalized potential concept was introduced,the Lagrange function and the Lagrange equation which are of the ideally,entirely constrained irrotational mechanics system related to non intertial system was infered by using the Hamilton theory.
引入广义势概念 ,应用推广的 Hamilton原理 ,推导出受理想完整约束的有势力学系统相对于非惯性系的 L agrange函数和 L agrange方
3.
The theorem of existence of the generalized potential has been established.
本文建立了广义势函数的存在性定理,同时也给出了一种广泛适用的求取广义势函数的方法。
2)  generalized inertial potential
广义惯性势
1.
Based on generalized inertial potential,this paper first gives new type of motion e-quation for nonholonomic relative motion dynamical systems,and then discusses constructing methodof in tegral in variance for these systems,finally obtains Noether s theorem and its inverse theorem.
在引入广义惯性势的基础上,首先给出了非完整相对运动动力学系统的新型运动方程,然后讨论了该系统的积分不变量的构造方法,最后得到了该系统的Noether定理及其逆定理。
2.
However, Largrange’s equation of the second kind of the ideal and holonomic constraint force systems is gave in this paper, beginning from generalized inertial potential to the non-inertial reference system, and Foucault’s pendulum regular of motion is solved by this analysis mechanics method.
本文从转动非惯性系出发,引入广义惯性势概念,导出非惯性系中受理想、完整约束有势力系的拉格朗日函数和第二类拉格朗日方程的广义惯性势形式。
3)  general chemical potential
广义化学势
1.
The results show that the general chemical potential not only expands the chemical potential definition of the classical thermodynamics and field of application,but also indicates the connotation of external physical fields contribution to the chemical potential and effect on the.
在应用广义化学势解决实际问题时,既得到了正确结果,又使问题的讨论简单明了、容易把握和理解。
4)  generalized potential function
广义势函数
1.
A generalized potential function U has to be found from the formula of inertia force in noninertia system and the analogous Lagrangefunction L”,then we get the second type Lagrange equation in noninertia system and the Lagrange equation in a potential field,which is anothermethod of answermg dynamic problems in noninertia system of analytic mechanics.
从非惯性参照系中的惯性力表达式出发,找出与之相对应的广义势函数 U′,进一步写出与之相对应的类Lagrange 函数表达式 L″,从而推导出在非惯性参照系中的第二类 Lagrange 方程和保守力系的 Lagrange 方程,并通过实例说明在非惯性参照系中 Lagrange 方程的应用,从分析力学的角度提出了求解非惯性参照系中的动力学问题的一种方法。
5)  Generalized oscillatory potential
广义振子势
6)  Generalized inertia potential
广义惯性势
1.
This paper has qualitatively discussed the Coriol is field of force and introduced the generalized inertia potential.
本文定性地讨论了科里奥利力场,引入了广义惯性势。
补充资料:村村势势
1.犹言土头土脑。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条