1) generalized projection operator
广义投影算子
1.
A new iterative scheme is introduced which is proved to be weakly convergent to zero point of maximal monotone operator T by using the techniques of Lyapunov functional and generalized projection operator,etc.
本文引入了一种新迭代格式,利用Lyapunov泛函和广义投影算子等技巧,在Banach空间中证明了迭代序列弱收敛于极大单调算子T的零点的结论。
2) general projection algorithm
广义投影算法
3) generalized projection
广义投影
1.
A generalized projection of strongly sub-feasible direction method with strong convergence for nonlinear constrained optimization
非线性约束优化一个强收敛的广义投影强次可行方向法
2.
Optimization problems with general constrains are discussed,a new algorithm with arbitrary initial point is presented by using the generalized projection technique and the idea of strongly subfeasible direction methods.
讨论一般约束最优化 ,利用广义投影技术和强次可行方向法思想 ,建立一个初始点任意的新算法 。
3.
Under mild conditions,a new feasible descent algorithm is presented and its global and superlinear convergence are proved by using the technique of combining generalized projection method with sequential systems of linear equations.
在较温和的条件下,采用广义投影和序列线性方程组相结合的技术,建立一个新的可行下降算法,证明了算法的全局收敛性和超线性收敛性。
4) generalized gradient projection method
广义投影梯度算法
1.
This paper analyzes the generalized gradient projection method for inequality constrained optimization problems under both non-degeneracy and degeneracy, and finds that two methods adopted for solving the different iteration directions are the same in essence.
对非退化和退化两种情形下的不等式约束优化问题的广义投影梯度算法作了分析,发现所采用的两种不同的求解迭代方向的方法在本质上是相同的。
5) k-generalized projection
k广义投影
1.
Since it is used widely in mathematics and other subjects, it got rapid development at the beginning of the 20th century, k-generalized projections and operator equations have become hot topics in operator theory.
如果T∈B(H)满足T~k=T~*,其中k∈N且k≥2,则T称为k广义投影。
补充资料:投影算子
投影算子
projector
投影算子[训巧eetor或户切eetiono声rator:npoeKTop,u卯eK双班0“皿“盛onePaTOPI 向最空间(vector space)上使得尸2二尸的一种线性算子(haear oPerato:)尸. M,H.Bo盛从exoBe盆皿益撰【补注】在西方文献中常常用术语投影(projection)以代替投影算子.亦见投影(pl.ojection). 如果P是投影,则I一尸也是投影,且它们一起确定了一个直和分解x“尸x①(I一尸)x.反之,一个直和分解定义了一个投影.在Banach空间理论中,投影通常也要求是有界的.给定一个可交换的投影的集合S,在S上有一个偏序,定义为尸)Q,当且仅当尸XOQX.两个交换投影的交(加忱rsec-山n)和并(~n)分别是投影尸Q和尸+Q一尸Q.投影的一个B以*代数是交换投影的这样一个集合,它包含零算子和单位算子且它在投影的交(intersec山nof Projection)(即取最大下界)和投影的并(unlo刀ofprojection)(即取最小上界)下是封闭的.这种投影的Boole代数在(自伴和谱)算子理论中起重要作用,见谱测度(s pectral measu化)和[AI].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条