1) quasi-semi-E-convex functions
拟半E-凸函数
1.
Recently a new criterion of quasi-semi-E-convex functions was introduced by Peng in 2006 for a new criterion of quisi-semi-E-convex functions.
最近,彭在文献[1]中提出了关于拟半E-凸函数的一个判别准则。
2) quasi-semi-E-convex function
拟-半-E-凸函数
1.
Furthermore,this theorem is generalized to the case of pseudo-semi-E-convex function and quasi-semi-E-convex function and the extent of its usage is enlarged.
对文献[2]中定理12进行研究,并在此基础上得到了一个判断不动点为最优解的必要条件,而且把该定理推广到了拟-半-E-凸函数与伪-半-E-凸函数的情形,拓展了该定理的应用范围。
3) pseudo-quasi-E-convex function
伪-拟-半-E-凸函数
1.
Firstly,two kinds of new convex functions——pseudo-quasi-E-convex function and pseudo-quasi-semi-E-convex function are defined,and meanwhile,some properties and proof of two kinds of new convex functions are given.
定义了2种新的凸函数——伪-拟-E-凸函数及伪-拟-半-E-凸函数。
4) semi-E-convex function
半-E-凸函数
1.
Furthermore,this theorem is generalized to the case of pseudo-semi-E-convex function and quasi-semi-E-convex function and the extent of its usage is enlarged.
对文献[2]中定理12进行研究,并在此基础上得到了一个判断不动点为最优解的必要条件,而且把该定理推广到了拟-半-E-凸函数与伪-半-E-凸函数的情形,拓展了该定理的应用范围。
2.
In the literature ,the two authors have studied E-convex sets,E-convex function and semi-E-convex function and obtained some properties of them.
文献[1,2]已对E-凸集,E-凸函数,半-E-凸函数进行了研究,得出了一些性质。
5) semi-E-convex functions
半E-凸函数
1.
In chapter 1, semi- E -convex functions and E -quasiconvex functionsdefined on an E -convex set and their properties are discussed.
第一章主要讨论了定义在E-凸集上的半E-凸函数,E-拟凸函数及它们的性质,对文献[15]中的定理12作了进一步讨论,从变分不等式的角度给出了新的证明。
6) E-quasiconvex function
E-拟凸函数
1.
On level sets of E-convex function and E-quasiconvex function
有关E-凸函数和E-拟凸函数的水平集
2.
Some errors that come from the related literatures were pointed out and corrected,and some properties and determinant criterion of E-quasiconvex functions were provided.
指出相关文献中讨论E-拟凸函数及其性质时出现的一些错误,并作了相应的更正。
3.
This paper introduces a kind of function called E-quasiconvex function by relaxing the definition of E-convex functions, and gives someproperties of it.
Youness引入的E-凸函数推广到E-拟凸函数,并研究了E-拟凸函数的一些性质。
补充资料:凸函数
Image:11559688111252300.jpg
凸函数是一个定义在某个向量空间的凸子集c(区间)上的实值函数f
设f为定义在区间i上的函数,若对i上的任意两点x1,x2和任意的实数λ∈(0,1),总有
f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),
则f称为i上的凸函数.
判定方法可利用定义法、已知结论法以及函数的二阶导数
说明:补充资料仅用于学习参考,请勿用于其它任何用途。