1) soliton equation
孤立子方程
1.
The Backlund transformation(BT) for a three di mensional soliton equation andits nonlinear su-perpositionformula are studiedinthis paper.
研究了一个三维的孤立子方程的Backlund变换(BT)和非线性叠加公式,证明了文[3,4]中的三维的Backlund变换可以分解成三个二维的Backlund变换,并讨论了一些与N维Liouville方程有关的问题。
2) the equation of soliton
孤立子运动方程
3) soliton equation hierarchy
孤立子方程族
4) discrete solition equation
离散化孤立子方程
1.
By using discrete difference method and introducing the discrete 1-form, we get the corresponding discrete solition equations and their Lax pairs, such as discrete Schrodinger equation, discrete MKdV and KdV equation.
可积条件是纤维丛上联络的零曲率条件,由微分几何联络1-形式的零曲率条件,给定不同的特征值的常值对角矩阵a和b,得出一系列可积系统中常见的孤立子方程及其对应的Lax对本文根据差分离散理论的基本思想,引入离散1-形式的零曲率条件,并应用到2×2流中,得出了一系列相应的离散化孤立子方程及离散的Lax对,如离散的Schr(?)dinger方程,离散的KdV和离散的MKdV方程。
5) soliton equation
孤子方程
1.
Based on the resulting Lax pairs of generalized coupled KdV soliton equation,a new Darboux transformation with multi-parameters for generalized coupled KdV soliton equation is derived with the help of a gauge transformation of the spectral problem.
借助谱问题的规范变换,给出广义耦合KdV孤子方程的达布变换,利用达布变换来产生广义耦合KdV孤子方程的奇孤子解,并且用行列式的形式来表达广义耦合KdV孤子方程的奇孤子解。
2.
A 3×3 spectral problem is proposed, from which a hierarchy of 1+1 dimensional soliton equations is derived.
本文从一个3×3谱问题出发,得到了一族1+1维孤子方程。
3.
In this paper ,we are going to study a three potential soliton equation[20]It is well known that there are several systematic approaches to obtain solutions of soliton equations.
本文考虑一个三位势的孤子方程 u_t=u_(xx)-u_xv+2ω_x, v_t=2u_x, ω_t=-ω_(xx)-(vω)_x, 我们已有许多方法得到孤子方程的解,其中达布变换是一种简单而美妙的方法,它从孤子方程的一个平凡解出发求得精确解。
6) Soliton equations
孤子方程
1.
In this paper, we consider the solution of some soliton equations by Hirota method, Wronskian technique and B(?)cklund transformation.
本文利用Hirota方法、Wronskian技巧和B(a|¨)cklund变换研究了一些等谱,非等谱与具自容源孤子方程的多孤子解。
2.
The 2+1 dimensional soliton equations are decomposed into some equations.
一些2+1维孤子方程被分解成NLS方程和复MKdV方程,利用它们的相溶解与三组2+1维孤子方程解之间的关系,得到2+1维孤子方程的精确解。
补充资料:孤立子
孤立子 solition 非线性场方程所具有的一类空间局域范围内不弥散的解。1834年J.S.罗素在一篇报告中提到他观察到一种奇特的自然现象,当一艘快速行驶的船突然停下来,船头出现一圆形平滑、轮廓分明的孤立波峰急速离去,滚滚向前,行进中形状和速度保持不变 。1895年D.J.柯脱维格和G.德维累斯研究浅水波时建立一个非线性波动方程(称为KdV方程 )得出类似的解,才在理论上作出说明。通常线性的波动方程具有行波解,时间和空间坐标不是各自独立的变量,而是以它们的线性组合作为变量,随着时间推移,波形向前传播。由于存在色散效应,波的各组成部分具有不同的频率,它们以不同的速度传播,行进一定距离之后,波形逐渐扩散而消失。对于非线性波动方程,其中出现非线性项,非线性效应会使较高频率不断累积,波在前进过程中变得越来越陡削而最终达到破碎的地步,犹如岸边见到的白帽波破碎一样。当非线性项和色散项同时存在,两种效应恰能相互抵消,则出现孤立波解。 20世纪60~70年代,通过计算机计算和关于浅水波的实验观测,表明孤立波碰撞后仍保持各自原来的形状和速度,犹如粒子,因而称为孤立子,随着研究的深入,发现除KdV方程外,还有一系列在应用中十分重要的非线性演化方程,孤立子解反映了自然界的一种相当普遍的非线性现象;并发展了一套求解这类非线性微分方程的强有力的解法,因而受到广泛的重视。孤立子被应用于粒子物理、固体物理以及各种非线性物理问题中,取得不少成功,也还存在不少困难。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条