1) fundamental matrix method
基本解矩阵法
1.
A numerical method and a code for seeking complex eigenvalues are given with the fundamental matrix method.
利用基本解矩阵法数值求解一类带有奇异点的复本征方程组,并对奇异点的消除和复本征值的确定及数值不稳定性等问题进行了讨论,编制了求解程序代码,并应用于离子温度梯度(ITG模或iη模)驱动不稳定性研究的数值模拟。
2) elementary solution matrix
基本解矩阵
1.
A calculating formula of elementary solution matrix e~(At);
基本解矩阵e~(At)的一种计算公式
3) fundamental matrix
基本矩阵
1.
The estimation of the fundamental matrix in computer vision;
计算机视觉中基本矩阵的估计方法
2.
Improved projection based M-estimators for fundamental matrix in stereovision;
立体视觉中基本矩阵的改进投影M估计方法
3.
Robust method for estimating the fundamental matrix;
一个基本矩阵的鲁棒估计算法
4) basic solution matrix
基解矩阵
1.
The basic solution matrix of linear homogeneous system with constant coefficients is found completely through using Jordan canonical form.
利用约当标准型求解常系数齐次线性微分方程组基解矩阵。
2.
Dealing with such a general situation, this paper solves homogeneous linear differential equation E = AE and the structure problem of the basic solution matrix with a very elementary method.
针对这种普遍情况,用很初等的方法解决一类齐次线性微分方程基解矩阵的结构问题。
3.
We obtain basic solution matrix of special equations by means of analogy and obtain boundary theorem of solution for unsolvable equations by means of integral inequality and Liapunov function.
本文用类比方法求得特殊方程组的基解矩阵;对于不能求解的方程组,用积分不等式和Liapunov函数方法,得到解的有界性定理。
5) fundamental solution matrix
基解矩阵
1.
The computation of fundamental solution matrix is very important in considering system of linear ordinary differential equations with constant coefficients.
在讨论常系数线性常微分方程组时,基解矩阵的计算是很重要的一部分内容。
2.
Thus,we can explore and research the solution of differential equations’ fundamental solution matrix from another angle.
基于微分方程组解法的分析,给出一般方阵化Jordon标准型过程中的非奇异矩阵过渡的求法,从而可从另一个角度来分析微分方程X'=AX基解矩阵新的求解方法。
3.
Using the exponential dichotomy of fundamental solution matrix,this paper proves the Hyers-Ulam stability of first-order differential equations with variable coefficients and generalizes the previous conclusions.
通过基解矩阵的指数二分性证明了一阶变系数微分方程的Hyers-Ulam稳定性,推广了已有结论。
6) matrix solution
矩阵解法
1.
By using the Euclidean algorithm and invertible linear transformation over an integral ring, the solution of integral indeterminate equations of the first degree was investigated in theory, and its matrix solution based on the elementary matrix transformation was proposed.
用欧几里德算法和整数环上的可逆线性变换,从理论上对整数一次不定方程组的解进行了深入研究,提出了用矩阵的初等变换求解整数一次不定方程组的矩阵解法,并利用MATLAB数学软件开发了相应的计算机程序。
2.
Through concepts of the matrix exponential function and the matrix function differential coefficient in combination with relevant results of linear algebra and differential equation,the paper finds the matrix solution to initial value problem of an n-th order linear constant coefficient differential equation.
借助矩阵指数函数和矩阵函数导数的概念,结合线性代数和微分方程的有关结论,给出了n阶线性常系数微分方程初值问题的矩阵解法。
3.
By using the Euclidean algorithm and invertible linear transformation over a polynomial ring, the solutions of polynomial indeterminate equations of first degree was investigated in theory, and its matrix solution based on the elementary matrix transformation was proposed.
利用欧几里德算法和多项式环上的可逆线性变换,从理论上对多项式环上的一次不定方程组的解进行深入的研究,给出了用矩阵的初等变换求解多项式环上的一次不定方程组的矩阵解法,并利用MATLAB数学软件开发了相应的计算机程序。
补充资料:基本割集矩阵(见网络图论)
基本割集矩阵(见网络图论)
fundamental cut-set matrix
Jl匕en ge〕1〕日zhen基本割集矩阵(fundamental eut一setnla一trix)见网络图论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条