1) r-sub-orthogonal matrix
r广义次正交矩阵
1.
The concepts of r-sub-orthogonal matrix are given, and its properties discussed.
给出r广义次正交矩阵的概念,并研究了它的性质。
2) extended sub-positive definite matrix
广义次正定矩阵
1.
The property of extended sub-positive definite matrix is studied further by means of the method of matrix analysis to obtain the lower estimated Oppenheim inequality of Hadamard multiplication determinant(belonging) to two extended sub-positive definite matrices under more general conditions and improve the past(results) in the adaptation range and estimated exactness.
用矩阵分析的方法,通过对广义次正定矩阵性质的进一步研究,得到了更一般条件下的两个广义次正定矩阵的Hadamard乘积的行列式下界估计的Oppenheim不等式,在适用范围和估计精度上都改进了已有的相应结果。
3) sub-generalized positive definite matrix
次广义正定矩阵
1.
In this paper is presented the definition of the sub-generalized positive definite matrix, and the inverse problem of matrix equation AX=B on the sub-generalized positive definite matrix is studied.
给出了次广义正定矩阵的定义 ,研究了矩阵方程AX =B在次广义正定矩阵类上的反问题 。
4) generalized orthogonal matrix
广义正交矩阵
1.
One kind of generalized orthogonal matrix and it s application;
一类广义正交矩阵的性质及其应用
2.
Aim To give the definition of involutory matrix,discuss its properties and crierions,establish the relationships of involutory matrix,generalized symmetrical matrix and generalized orthogonal matrix.
目的给出拟对合矩阵的定义,讨论其性质和判定,研究拟对合矩阵与广义正交矩阵、广义对称矩阵之间的关系。
3.
The concept of orthogonal matrix and four properties of generalized orthogonal matrix in determinant, characteristic solution and adioint matrix were discussed.
推广了正交矩阵 ,并研究了广义正交矩阵在行列式、特征根、伴随矩阵等问题中的四个性
5) R-orthogonal matrix
R正交矩阵
6) meta-generalized semi-positive definite matrix
次广义半正定矩阵
补充资料:正交矩阵
正交矩阵
orthogonal matrix
正交矩阵【份血剧间叮.廿改;opT0r0I.幼1.11四M盯-四从a」 具有单位元l的交换环R上的一个矩阵(Inatrix),其转里矩阵(trans衅ed皿呱)与逆矩阵相同正交矩阵的行列式等于士IR上的所有n阶正交矩阵的集合构成一般线性群(gene阁如c盯grouP)GL。(R)的一个子群.对任何实正交矩阵a,存在一个实正交矩阵c,使得eae一’一d认g【土l,一,士l,a,,一’,arj,其中 }!。05 0 sin。}! a=11一J’J 11。 {{一sm毋,cos毋2 11一个非退化复矩阵a相似于一个复正交矩阵,当且仅当其初等因子(eleITrntary di访sors)系具有下列胜质: 1)对又笋士1,初等因子(x一又)爪和(x一厂‘)“重复相同的次数; 2)每个形如(x土l)2,的初等因子都重复偶数次.【补注】由正交矩阵A关于标准基以x)=Ax(x〔R”)定义的映射盯R”~R”,保持标准内积不变,因此定义了一个正交映射(ortllogonaln‘pp吨).更一般地,若V和W是具有内积<,),,,(,)甲的内积空间,则使得<:(x),二(y)),=(另,y>。的线性映射眠V~W称为正交映射. 任何非奇异(复或实)矩阵M允许一个极分解(polar deeomposition)M=SQ“Q:S:,其中S和S;对称,Q和Q:正交.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条