说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Carleson算子
1)  Carleson operator
Carleson算子
1.
The following theorem be obtained that the Carleson operator C is of the weak(p,q) type if and only if there exists constant A>0 such that the following estimate ‖C_n f‖_(L(q,∞))≤A‖f‖_p holds for all bounded function n:R →R,which is an infinite(or finite) linear combination of characteristic functions of intervals.
讨论了Carleson算子C的线性化问题,证明了下面的结论:设1≤p,q<∞,则Carleson算子C为弱(p,q)型的A>0,s。
2)  Carleson measure
Carleson测度
1.
Inequality to describe double Carleson measure and description of Carleson inverse inequality;
双Carleson测度的积分不等式及对Carleson逆不等式的刻画
2.
Carleson measure and Carleson measure in weighted Bergman space;
Carleson测度与加权Bergman空间上的Carleson测度
3.
The bounded property of a operator and the description of Carleson measure with BMO_ function;
算子有界性及BMO_函数对Carleson测度的刻画
3)  Carleson measures
Carleson测度
4)  K-Carleson measure
K-Carleson测度
1.
In this paper,we use K-Carleson measure to discuss the bounded composition operators from Bα(Bα0) to QK and the bounded and compact composition operators from Bα to QK,0.
用K-Carleson测度刻画了Bα(B0α)到QK的复合算子的有界性,以及Bα到QK,0的复合算子的有界性和紧性。
2.
The second part of the paper gives the distance formulas from Bloch functions to some Q_K-type spaces,which are characterized by using the K-Carleson measure.
第二部分利用K-Carleson测度刻划出了Bloch函数到Q_K型函数空间的距离,其中包含本文的主要定理及其证明。
5)  η-Carleson measure
η-Carleson测度
1.
Some sufficient and necessary conditions for the composition operators between different Privalov spaces and different weighted Bergman-Privalov spaces to be metrically bounded or metrically compact are given by usingη-Carleson measure, and some function theoretic characterizations are also given.
利用η-Carleson测度给出了单位球上不同Privalov以及不同加权Bergman-Privalov空间之间的复合算子是度量有界或度量紧的充要条件,并给出了一些函数理论方面的刻画。
6)  Carleson square
Carleson方块
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条