1) weighted K-functional
加权K-泛函
1.
Using the equivalence relation between weighted K-functional and weighted modula of smoothness, a direct theorem and inverse theorem of the relation connected with derivatives of the Bernstein operators and the smoothness of functions are obtained.
利用加权K-泛函与加权光滑模的等价关系,得到了加权意义下Bernstein算子的导数与它所逼近函数的光滑性之间关系的等价定理。
2.
The equivalence relation between the weighted K-functional and the weighted moduli of smoothness in Lψ spaces is studied.
研究Lψ空间上的加权K-泛函与加权光滑模之间的等价性,为在Lψ空间上建立线性算子的加权逼近提供一个有力工具。
2) K-functional
K-泛函
1.
The equivalence relation of the weighted K-functional and the weighted smoothness moduli in the B_α space;
B_α空间中加权K-泛函与加权光滑模的等价性
2.
The purpose of this paper is to introduce K-functional K(f,t)n to extend the Inequality to 0λ1.
本文引入K-泛函将已有结论推广到0λ1的情形。
3.
In this paper,the authors consider the weighted simultaneous approximation by the Gamma operator and establish the strong converse inequality of type B for the operator with the weighted K-functional K_φ~2(f,t~2)_(w,p) in the space L_p (1≤p≤∞).
该文利用修正的带权K-泛函K_φ~2(f,t~2)_ω,p,考虑Gamma算子在L_p(1≤p≤∞)空间带权同时逼近,给出了它的B-型强逆不等式。
3) K functional
K-泛函
4) K-function
K-泛函
1.
We use the technique of interpolation spaces and characterization of K-function and modulus of smoothness which has been used for inverse theorems.
研究Gamma算子在Lp空间中的逼近性质,利用逆定理中常用的插补空间和K-泛函及光滑模的方法,建立整体逼近的等价定理,同时还给出了该算子的其他一些逼近性质。
5) K-functional
K泛函
6) K-Functionals
K泛函
1.
The purpose of this paper is to derive the direct and converse results of simultaneous approximation of JacobiAlweighted Baskakov-Durrmeyer operators by means of the equlvalenTce of Ditzian-Totik modulus and modified K-functionals.
利用Ditzian-Totik光滑模并改变K泛函的等价性导出Baskakov-Durrmeyer型算子的带Jacobi权同时逼近的正逆结果。
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条