1) weak contingent generalized gradient
弱余切广义梯度
1.
We gave the relation of weak subdifferential and weak contingent generalized gradient of set-valued mappings,and with the weak contingent generalized gradient.
给出了集值映射的弱次微分与弱余切广义梯度的关系,并且借助弱余切广义梯度得到了集值优化问题的一个最优性条件。
2) generalized gradient
广义梯度
1.
Study of generalized gradient and its application in blind signal separation;
广义梯度及其在盲信号分离中应用的研究
2.
A newly generalized gradient and application to optimization problems;
一类广义梯度及其在最优化中的应用
3) general gradient method
广义梯度法
1.
An optimal algorithm model for the electrical plug design is put forward according to the general gradient method,which is used to settle the multi-variable and non-lin- ear problems.
根据电扣机设计的两类问题和广义梯度法解决多变量、非线性约束问题的一般方法,提出了扣机电磁铁主要设计参数的优化算法。
4) general negative gradient
广义负梯度
1.
The concept of general gradient was introduced into the original Monte Carlo method,and an improved Monte Carlo method based on general negative gradient was proposed.
借鉴数值方法中梯度方法的思想,引进了广义负梯度方向的概念,给出了一种基于广义负梯度方向的Monte Carlo方法———GGMC方法。
5) generalized subgradient
广义次梯度
1.
Based on and[1] and [2],in this paper we further discuss the relation hetween generalized gradient and generalized subgradient.
本文在[1]、[2]的基础上进一步讨论了广义梯度与广义次梯度的关系,揭示了广义次梯度的线性性质,推广了它们在最优化中的应用。
2.
: A generalized subgradient for the Lipschitz function has been defined, and was applied in thenonsmooth optimization.
该文针对弱Lipschitz函数定义了一种广义次梯度,并将它成功地应用在非光滑最优化理论中。
3.
This paper shows that the notion of generalized subgradient of weak Lipschitz functions as defined by Zhang Yuzhong in his paper which appeared in this journal vol.
本文证明张玉忠同志在“弱Lipschitz函数、它的广义次梯度及其在优化中的应用”一文中定义的广义次梯度f(π),当n≥2时即为R ̄n,因此这种广义次梯度是没有多少应用价值的。
6) Clarke generalized gradient
Clarke广义梯度
1.
We prove that a Fritz John point expressed by Clarke generalized gradient is a Fritz John point expressed by quasidifferential.
证明了该问题拟微分形式下的FritzJohn点必是Clarke广义梯度形式下的FritzJohn点。
2.
By utilizing the notion of Filippov solution,Clarke generalized gradient and nonsmooth Lyapunov stability theory,a further discuss on sliding mode control is presented for second-order systems with a nonsmooth linear Lipschitz continuous sliding surface.
利用Filippov解、Clarke广义梯度和非光滑Lyapunov稳定理论,对一类滑模面设计为非光滑线性Lipschitz连续平面的二阶系统滑模控制问题进行深入讨论。
补充资料:余切
余切
cotangent
cotan:=一匕. tanX余切的反函数称为反余切(ar助tan罗nt).余切的导数是 (cotan二、‘=二上. Sln‘X余切的积分是 fco‘an xdx=in!s‘n xl+C余切的级数展开是 1 x x3 COtanx二一一丁一二?一·…U<1 xl<佩 XJ络〕 复自变量z的余切是亚纯函数,具有极点z=冗n,n=0,士l,土2.…’10.A ropbKOB撰[补注1亦见正切曲线(tan罗nt,curve of the);正弦(sine);余弦(cosine).张鸿林译余切【伽佃犯脚吐;咖别.飞理」 三角函数(t rigonometric functions、之一: COSX V二CotanX=—; SlnX另一些表示法是cotx,cotgx和ctg x.其定义域是除去横坐标为x‘7rn(n=0,士1,士2,…)的点以外的整个实轴.余切是无界奇周期函数(周期为幻.在余切和正切之间存在关系式
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条