1) general gradient system
广义梯度系统
1.
This paper investigates topological properties of the general gradient system,and demonstrates by results of differential topology that the boundedness of the general gradient system is equivalent to the boundedness of the potential energy boundary surface(PEBS).
该文研究了广义梯度系统的拓扑性质,应用微分拓扑学原理证明,广义梯度系统的完全稳定性与势能界面的有界性是等价的;广义梯度系统完全稳定当且仅当该系统既有渊点又有源点。
2) generalized gradient
广义梯度
1.
Study of generalized gradient and its application in blind signal separation;
广义梯度及其在盲信号分离中应用的研究
2.
A newly generalized gradient and application to optimization problems;
一类广义梯度及其在最优化中的应用
3) general gradient method
广义梯度法
1.
An optimal algorithm model for the electrical plug design is put forward according to the general gradient method,which is used to settle the multi-variable and non-lin- ear problems.
根据电扣机设计的两类问题和广义梯度法解决多变量、非线性约束问题的一般方法,提出了扣机电磁铁主要设计参数的优化算法。
4) general negative gradient
广义负梯度
1.
The concept of general gradient was introduced into the original Monte Carlo method,and an improved Monte Carlo method based on general negative gradient was proposed.
借鉴数值方法中梯度方法的思想,引进了广义负梯度方向的概念,给出了一种基于广义负梯度方向的Monte Carlo方法———GGMC方法。
5) generalized subgradient
广义次梯度
1.
Based on and[1] and [2],in this paper we further discuss the relation hetween generalized gradient and generalized subgradient.
本文在[1]、[2]的基础上进一步讨论了广义梯度与广义次梯度的关系,揭示了广义次梯度的线性性质,推广了它们在最优化中的应用。
2.
: A generalized subgradient for the Lipschitz function has been defined, and was applied in thenonsmooth optimization.
该文针对弱Lipschitz函数定义了一种广义次梯度,并将它成功地应用在非光滑最优化理论中。
3.
This paper shows that the notion of generalized subgradient of weak Lipschitz functions as defined by Zhang Yuzhong in his paper which appeared in this journal vol.
本文证明张玉忠同志在“弱Lipschitz函数、它的广义次梯度及其在优化中的应用”一文中定义的广义次梯度f(π),当n≥2时即为R ̄n,因此这种广义次梯度是没有多少应用价值的。
6) Clarke generalized gradient
Clarke广义梯度
1.
We prove that a Fritz John point expressed by Clarke generalized gradient is a Fritz John point expressed by quasidifferential.
证明了该问题拟微分形式下的FritzJohn点必是Clarke广义梯度形式下的FritzJohn点。
2.
By utilizing the notion of Filippov solution,Clarke generalized gradient and nonsmooth Lyapunov stability theory,a further discuss on sliding mode control is presented for second-order systems with a nonsmooth linear Lipschitz continuous sliding surface.
利用Filippov解、Clarke广义梯度和非光滑Lyapunov稳定理论,对一类滑模面设计为非光滑线性Lipschitz连续平面的二阶系统滑模控制问题进行深入讨论。
补充资料:梯度动力系统
梯度动力系统
gradient dynamical system
梯度动力系统【脚曲纽街1即油习叮时曰.;印叭HelrrHa:口..aM.,e伙a皿e即TeMa] 由光滑流形上光滑函数的梯度所确定的流(now)(连续时间动力系统(。〕m加uo场~tinrd孙划而司哪-t巴n)).f的直接微分生成一个共变向t(covahant似-tor)(例如,在有限维情形以x’,…,扩为局部坐标的坐标邻域U中,此共变向量就是以叮厂axl,二,盯/刁妙为分量的向量),而相速度向量为反变向,(田n加vahantw以or).由其一到另一个的过渡是借助于Ri日比日nn度量来实现的,且梯度动力系统的定义依赖于这一度量(以及f)的选取;相速度向量常取相反的符号.在所给例子中区域U上梯度动力系统是用常微分方程组 dx,.二刁f 书-,士乞g’’宁一,i=1,…,。 dt丫口日x了来描述的,其中系数gij构成的矩阵是度量张量的系数矩阵(gtj)的逆;。个方程右边的符号应理解为同取正号或同取负号.梯度动力系统往往理解为稍许更一般类型的方程组【1].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条