1) Peano generalized derivatives
Peano广义梯度
1.
By using Peano generalized derivatives necessary and sufficient second-order optimality conditions are derived.
借助于Peano广义梯度,给出了其二阶最优性必要条件和二阶最优性充分条件。
2) generalized Peano theorem
广义Peano定理
3) generalized gradient
广义梯度
1.
Study of generalized gradient and its application in blind signal separation;
广义梯度及其在盲信号分离中应用的研究
2.
A newly generalized gradient and application to optimization problems;
一类广义梯度及其在最优化中的应用
4) general gradient method
广义梯度法
1.
An optimal algorithm model for the electrical plug design is put forward according to the general gradient method,which is used to settle the multi-variable and non-lin- ear problems.
根据电扣机设计的两类问题和广义梯度法解决多变量、非线性约束问题的一般方法,提出了扣机电磁铁主要设计参数的优化算法。
5) general negative gradient
广义负梯度
1.
The concept of general gradient was introduced into the original Monte Carlo method,and an improved Monte Carlo method based on general negative gradient was proposed.
借鉴数值方法中梯度方法的思想,引进了广义负梯度方向的概念,给出了一种基于广义负梯度方向的Monte Carlo方法———GGMC方法。
6) generalized subgradient
广义次梯度
1.
Based on and[1] and [2],in this paper we further discuss the relation hetween generalized gradient and generalized subgradient.
本文在[1]、[2]的基础上进一步讨论了广义梯度与广义次梯度的关系,揭示了广义次梯度的线性性质,推广了它们在最优化中的应用。
2.
: A generalized subgradient for the Lipschitz function has been defined, and was applied in thenonsmooth optimization.
该文针对弱Lipschitz函数定义了一种广义次梯度,并将它成功地应用在非光滑最优化理论中。
3.
This paper shows that the notion of generalized subgradient of weak Lipschitz functions as defined by Zhang Yuzhong in his paper which appeared in this journal vol.
本文证明张玉忠同志在“弱Lipschitz函数、它的广义次梯度及其在优化中的应用”一文中定义的广义次梯度f(π),当n≥2时即为R ̄n,因此这种广义次梯度是没有多少应用价值的。
补充资料:Peano导数
Peano导数
Peano derivative
1七.1”导数【P.no deriv a6ve;fleaHO IlpoH3BO职翻1 导数(deri珑吐ive)概念的一种推广.假设存在一个正数吞>O,使得 仪 ]吸戈”十「)一“(,一卜“,「十”’十万不十狱正)「对一叨满足!t}<占的门戊立,其中钧,,一,二,为常数,而当卜,O时,下(r)、仇又设?(0)=0.那么:。称为函数、f在点戈,的r阶广义P口加导数(罗::emli双刘Peano deri论tive),i己为f,:)(x。)=“;:特别.,,,二j怀,,),:,=f〔!,(义.,)·若j飞r)(x。)存在,r)I,那么人;一,。(凡,)也存在.若通常的双边导数了“)(二t,)存在且有限,则.人,,(二、,)二f〔”(x。).当/>l时,其逆不真,例如函数 f。一’尸,义笋。且为有理数, /(、)=哎 to,戈二O或无理数,于是几探0)二o,r二l,2,…,但当x护o时,人1)(x)不存在(因/(x)在,笋o处是不连续的).所以通常导数.户,,(0)当r>1时不存在. 无穷的广‘义Peano导数也可以定义.假设j(x‘十:)一,+·,。、二十兴r·对一切满足}。}<石的t均成立,其中气、,‘’,仪;一l为常数、而当t,0时,比:(t),:厂(仪;是数或符号叨),那么。;也称为函数厂在点气,处的r阶压、no导数.它由G.POulo引人.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条