1) q-uniformly TC convex
q一致TC凸
1.
The relationships between the growth velocity of q-mean square function of a special martingale with values in banach space and q-uniformly TC convex Banach space have been studied, and the structure of a Banach space has been characterized by using the growth velocity of q-mean square function of a special martingale with values in banach space.
研究了Banach空间上X值特殊鞅的q均方函数的增长速度与X的q一致TC凸性的关系,从而用特殊鞅的q均方函数的增长速度刻划了抽象空间的结构。
2) Uniformly TC convex
一致TC凸
1.
Then we give several characterizations of q-uniformly TC convex quasi-Banach space.
本文分四部分,第一部分在拟Banach空间上定义了TC凸性模和TC光滑模并证明了在Banach空间上它分别和一致凸性和一致光滑性刻划的空间是一致的,即Banach空间X是一致TC凸的的充分必要条件是它是一致凸的,Banach空间X是一致TC光滑的充分必要条件是它是一致光滑的,还分别得出了判定一致TC凸和一致TC光滑的几个充分必要条件,同时还证明了在拟范数下的重赋范定理。
3) q uniform convexity
q一致凸性
4) q-uniformly convex space
q一致凸空间
1.
We study vector-valued tree martingales and proved that if X is isomorphic to a q-uniformly convex space (2q<∞) then for every X-valued tree martingale f=(f_t, t∈T) and α1, max(q, α)β<∞, it holds that ‖(S~((q))_t(f), t∈T)‖_(M~(α∞))C_(αβ)‖f‖_(P~(αβ))‖(σ~((q))_t(f), t∈T)‖_(M~(α∞))C_(αβ)‖f‖_(P~(αβ))where C_(αβ) depends only α and β.
主要结果是如下不等式:若X同构于q一致凸空间(2 q<∞),则对每个X值的树鞅f=(ft,t∈T)α 1和max(α,q) β<∞成立‖(S(q)t(f),t∈T)‖Mα∞ Cαβ‖f‖Pαβ‖(σ(q)t(f),t∈T)‖Mα∞ Cαβ‖f‖Pαβ其中Cαβ是只依赖于α和β的常数。
5) q-uniformly PL-convexitiable
q一致PL凸性
1.
The author uses a class of special analytic function to define convexity modulus on quasi-Banach spaces, and gives a characterization of uniformly PL-convexity of complex Banach space in this paper,and obtains inequalily equation of some equivalent condition of q-uniformly PL-convexitiable of the spaces.
用一类特殊解析函数定义了复拟Banach空间上凸性模,并讨论了复Banach空间一致PL凸性,得到了刻画q一致PL凸性的Hardy鞅不等式。
6) analytic q-uniformly convex
解析q一致凸
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条