1) uniformly convex
一致凸
1.
Convergence theorems of Ishikawa iteration for nonexpansive mapping in a uniformly convex Banach space;
一致凸Banach空间中非扩张映象的Ishikawa迭代收敛定理
2.
The existence and Uni queness theorems of common coupled fixed point and coincidence points for a sequence of binary contraction mappings,canceled all continuous assumptions in uniformly convex Banach space.
在一致凸 Banach 空间中,获得了二元非线性压缩映象对和映象列的公共耦合不动点的存在与唯一性定理,并对已有的结果进行了推广。
3.
It reaches the conclusion that the continuous multi_valued asymptotically nonexpansive on the nonempty closed convex and bounded subset of a uniformly convex Banach space has a fixed point.
本文借助于渐近中点、渐近半径的概念,得到一致凸Banach空间中非空有界闭凸子集上的连续集值渐近非扩张映射有不动点。
2) uniform convexity
一致凸
1.
When p > 1, necessary and sufficient condition for d(w,p) to be uniform non-square is sup ,and obtain that uniform convexity is equivalent to uniform nonsquare.
当p>1时,d(w,p)一致非方的充分必要条件是,从而得到了一致非方与一致凸等价。
2.
This indicates that the nonsquare constant is not necessary to be 2~(1/2) in some spaces with P_λproperty for someλ, and that P_λproperty does not imply strict convexity or even uniform convexity.
其次,介绍了关于非方常数,等腰正交的基本定义和基本结论,并且构造了一个具有P_λ性质的Banach空间,计算出了该空间的非方常数,从而说明了对于某特定的λ,具有P_λ性质的赋范空间其非方常数不一定为2~(1/2) ,同时也说明了具有P_λ性质并不能保证赋范空间的严格凸性或者一致凸性。
3) UR point
一致凸点
4) uniform convexity
一致凸性
1.
We define the TC modulus of convexity and smoothness of Banach spaces and characterize uniform convexity and uniform smoothness.
定义了TC凸性模,TC光滑模,刻划了一致凸性与一致光滑性,并研究了取值于Banach空间的特殊鞅不等式与一致凸性,一致光滑性的关系。
2.
This paper gives a new uniform convexity definition with neighbourhoods in locally convex spaces, we obtain that locally convex spaces of both quasi-completeness and uniform convexity are semi-reflexive, generalize the conclusion of uniform convexity of locally convex spaces put forward by Wu Congxin and have solved his remaining problems.
利用邻域给出局部凸空间的一致凸性的新定义,证明了亚完备的一致凸空间是半自反的,推广了吴从炘等局部凸空间一致凸性的结果,并且解决了其定义不能够解决的问题。
3.
We studies the property of the convex modular which is generated by a Musielak-Orlicz function,using the uniform convexity of the MusielakOrlicz function,we give a sufficient condition for the(S)_+-property of the subdifferential mapping of the convex modular generated by it;And based on this we obtain the(S).
本文中在较弱的条件下对向量值Musielak-Orlicz空间的一些已有的理论结果进行了改进,并给出了在此类一致凸空间上的Radon-Riesz定理的一个有用的变体;研究了由Musielak-Orlicz函数生成的凸模的性质,用Musielak-Orlicz函数的一致凸性给出了由它生成的凸模的次微分映射是(S)_+型映射的一个充分条件;在此理论基础上,证明了很广的一类具变分结构的拟线性椭圆算子是(S)_+型的;引入了具有变指数p(x)型的Musielak-Orlicz函数及p(x)-Laplacian型算子的新概念,它包含通常的p(x)-Laplacian算子为其特殊情形,证明了p(x)-Laplacian型算子是(S)_+型的;获得了一批关于p(x)-Laplacian型方程解的存在性与多解性的结果。
5) local uniformly convex
局一致凸
1.
This paper uses uniform and simple form to treat uniformly convex, local uniformly convex, weak uniformly convex, weak local uniformly convex, strictly convex, (M) property and (WM) property in Banach space and an equivalence characterization of them in Banach space is given.
用统一且简洁形式处理Banach空间的一致凸、局一致凸、弱一致凸、弱局一致凸、严格凸及(M)性质和(WM)性质,给出了它们的一种等价刻画。
6) weak uniformly convex
弱一致凸
1.
This paper uses uniform and simple form to treat uniformly convex, local uniformly convex, weak uniformly convex, weak local uniformly convex, strictly convex, (M) property and (WM) property in Banach space and an equivalence characterization of them in Banach space is given.
用统一且简洁形式处理Banach空间的一致凸、局一致凸、弱一致凸、弱局一致凸、严格凸及(M)性质和(WM)性质,给出了它们的一种等价刻画。
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条