1) K-strong smoothness
K强光滑性
1.
We introduced the K-strong convexity (K-strong smoothness) in locally convex spaces, which are generalizations of both K-strong convexity (K-strong smoothness) in Banach spaces and strong convexity (K-strong smoothness) in locally convex spaces.
首先引进了局部凸空间K强凸性的概念,它既是Banach空间K强凸性概念在局部凸空间中的推广,又是局部凸空间强凸性概念的自然推广;其次给出了局部凸空间K强凸性概念的对偶概念,即局部凸空间K强光滑性的概念,并得到了K强凸(K强光滑)的局部凸空间的特征刻画;最后,在P-自反的条件下给出了它们之间的对偶定理,即(X,TP)是K强凸(K强光滑)的当且仅当(X′,TP′)是K强光滑(K强凸)的。
3) K-strongly smooth
K-强光滑
1.
Reference [5] proved the definition of the k-strongly Smooth is equivalent in [1] and [5].
文[4]证明了[2]和[3]给出的k-强凸空间定义是等价的,文献[5]证明了文[1]和[5]给出的k-强光滑定义是等价的。
4) k-smoothness
k-光滑性
1.
The definitions of k-strict convexity and k-smoothness in locally convex spaces are given by k-dimension convex volume and it is proved that they are the extension of corresponding concepts in Banach spaces and dual(X,P).
利用k维凸体体积给出了局部凸空间中k-严格凸和k-光滑性的定义,证明了它们是B anach空间和偶对(X,P)相应概念的推广,并指出了它们之间的对偶关系。
5) k smoothness
k光滑性
1.
In this paper, we spead some geometry theories on k convexity、 k smoothness in Banach spaces and convexity、 smoothness in dual (X,P).
本文主要利用半范数族P,推广了Banach空间关于k凸性和k光滑性以及偶对(X,P)关于凸性和光滑性的几何理论。
6) K-weakly smooth
K-弱光滑性
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条